in

Responses of turkey vultures to unmanned aircraft systems vary by platform

  • 1.

    Christie, K. S., Gilbert, S. L., Brown, C. L., Hatfield, M. & Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 14, 241–251 (2016).

    Article 

    Google Scholar 

  • 2.

    Anderson, K. & Gaston, K. J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11, 138–146 (2013).

    Article 

    Google Scholar 

  • 3.

    Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Syst. 3, 137–155 (2015).

    Article 

    Google Scholar 

  • 4.

    Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 4, 1015–1020 (2003).

    Google Scholar 

  • 5.

    Wiegmann, D. A. & Taneja, N. Analysis of injuries among pilots involved in fatal general aviation airplane accidents. Accid. Anal. Prev. 35, 571–577 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: first experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 22574. https://doi.org/10.1038/srep22574 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Egan, C. C., Blackwell, B. F., Fernández-Juricic, E. & Klug, P. E. Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?. The Condor 122, 1–15. https://doi.org/10.1093/condor/duaa014 (2020).

    Article 

    Google Scholar 

  • 9.

    Hahn, N. et al. Unmanned aerial vehicles mitigate human–elephant conflict on the borders of Tanzanian Parks: A case study. Oryx 51, 513–516 (2017).

    Article 

    Google Scholar 

  • 10.

    FAA. Protocol for the Conduct and Review of Wildlife Hazard Site Visits, Wildlife Hazard Assessments, and Wildlife Hazard Management Plan. (2018).

  • 11.

    Dolbeer, R. A., Begier, M. J., Miller, P. R., Weller, J. R. & Anderson, A. L. Wildlife strikes to civil aircraft in the United States 1990–2019. 124 (Federal Aviation Administration, Washington, D.C., USA, 2021).

  • 12.

    Bivings, A. in Bird Strike Committee Europe. 481–487.

  • 13.

    Wandrie, L. J., Klug, P. E. & Clark, M. E. Evaluation of two unmanned aircraft systems as tools for protecting crops from blackbird damage. Crop Prot. 117, 15–19 (2019).

    Article 

    Google Scholar 

  • 14.

    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).

    Article 

    Google Scholar 

  • 15.

    Cooper, W. E., Samia, D. S. & Blumstein, D. T. Chapter five-FEAR, spontaneity, and artifact in economic escape theory: A review and prospectus. Adv. Study Behav. 47, 147–179 (2015).

    Article 

    Google Scholar 

  • 16.

    Lima, S. L., Blackwell, B. F., DeVault, T. L. & Fernandez-Juricic, E. Animal reactions to oncoming vehicles: A conceptual review. Biol. Rev. Camb. Philos. Soc. 90, 60–76. https://doi.org/10.1111/brv.12093 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Bernhardt, G. E., Blackwell, B. F., DeVault, T. L. & Kutschbach-Brohl, L. Fatal injuries to birds from collisions with aircraft reveal anti-predator behaviours. Ibis https://doi.org/10.1111/j.1474-919X.2010.01043.x (2010).

    Article 

    Google Scholar 

  • 18.

    McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 4, e1831 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, e0178448 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Tinbergen, N. Social releasers and the experimental method required for their study. Wilson Bull., 6–51 (1948).

  • 21.

    Kirk, D. A. & Mossman, M. J. in Bird of the World (ed Cornell Lab of Ornithology) (Poole, A.F.,Gill, F.B., Ithaca, NY, USA, 2020).

  • 22.

    FAA. Wildlife Strike Database, wildlife.faa.gov (2020).

  • 23.

    DeVault, T. L. et al. Estimating interspecific economic risk of bird strikes with aircraft. Wildl. Soc. Bull. 42, 94–101 (2018).

    Article 

    Google Scholar 

  • 24.

    DeVault, T. L., Blackwell, B. F., Seamans, T. W. & Belant, J. L. Identification of off airport interspecific avian hazards to aircraft. J. Wildl. Manag. 80, 746–752 (2016).

    Article 

    Google Scholar 

  • 25.

    Kluever, B. M., Pfeiffer, M. B., Barras, S. C., Dunlap, B. G. & Humberg, L. A. Black vulture conflict and management in the United States: Damage trends, management overview, and research needs. Hum. Wildl. Interact. 14, 8 (2020).

    Google Scholar 

  • 26.

    Walters, J. R. Anti-predatory behavior of lapwings: field evidence of discriminative abilities. Wilson Bull., 49–70 (1990).

  • 27.

    Septon, G. Peregrine falcon strikes turkey vulture. Passenger Pigeon 53, 192 (1991).

    Google Scholar 

  • 28.

    Coleman, J. S. & Fraser, J. D. Predation on black and Turkey vultures. Wilson Bull. 98, 600–601 (1986).

    Google Scholar 

  • 29.

    Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 9, 2142. https://doi.org/10.1038/s41598-019-38610-x (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).

    Article 

    Google Scholar 

  • 32.

    Belant, J. L., Seamans, T. W., Gabrey, S. W. & Dolbeer, R. A. Abundance of gulls and other birds at landfills in northern Ohio. Am. Midl. Nat. 134, 30–40 (1995).

    Article 

    Google Scholar 

  • 33.

    Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).

    Article 

    Google Scholar 

  • 34.

    DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernández-Juricic, E. Effects of vehicle speed on flight initiation by turkey vultures: implications for bird-vehicle collisions. PLoS ONE 9, e87944 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Doppler, M. S., Blackwell, B. F., DeVault, T. L. & Fernández-Juricic, E. Cowbird responses to aircraft with lights tuned to their eyes: Implications for bird–aircraft collisions. The Condor 117, 165–177 (2015).

    Article 

    Google Scholar 

  • 36.

    Blackwell, B. F., Fernandez-Juricic, E., Seamans, T. W. & Dolan, T. Avian visual system configuration and behavioural response to object approach. Anim. Behav. 77, 673–684 (2009).

    Article 

    Google Scholar 

  • 37.

    DeVault, T. L., Reinhart, B. D., Brisbin, I. L., Rhodes, O. E. & Bechard. Flight Behavior of Black and Turkey Vultures: Implications for reducing bird–aircraft collisions. J. Wildl. Manag. 69, 601–608. https://doi.org/10.2193/0022-541X(2005)069[0601:FBOBAT]2.0.CO;2 (2005).

  • 38.

    Runyan, A. M. & Blumstein, D. T. Do individual differences influence flight initiation distance?. J. Wildl. Manag. 68, 1124–1129 (2004).

    Article 

    Google Scholar 

  • 39.

    Rebolo-Ifrán, N., Grilli, M. G. & Lambertucci, S. A. Drones as a threat to wildlife: YouTube complements science in providing evidence about their effect. Environ. Conserv. 46, 205–210 (2019).

    Article 

    Google Scholar 

  • 40.

    Fernández-Juricic, E., Deisher, M., Stark, A. C. & Randolet, J. Predator detection is limited in microhabitats with high light intensity: An experiment with Brown-headed Cowbirds. Ethology 118, 341–350 (2012).

    Article 

    Google Scholar 

  • 41.

    Koch, D. D. Glare and contrast sensitivity testing in cataract patients. J. Cataract Refract. Surg. 15, 158–164 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. Royal Soc. B. 265, 351–358 (1998).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Hill, G. E., Hill, G. E., McGraw, K. J. & Kevin, J. Bird coloration: mechanisms and measurements. Vol. 1 (Harvard University Press, 2006).

  • 45.

    Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M. & Shawkey, M. D. pavo: Asn R package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4, 906–913 (2013).

    Google Scholar 

  • 46.

    Lakens, D. Sample Size Justification. (2021).

  • 47.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).

    Article 

    Google Scholar 

  • 49.

    Garamszegi, L. Z. A simple statistical guide for the analysis of behaviour when data are constrained due to practical or ethical reasons. Anim. Behav. 120, 223–234 (2016).

    Article 

    Google Scholar 

  • 50.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer Science & Business Media, 2002).

  • 51.

    Nauman, L. E. Spatial distribution in a turkey vulture roost, The Ohio State University, (1965).

  • 52.

    Bertram, B. C. Living in groups: predators and prey. Behavioural ecology: an evolutionary approach, 221–248 (1978).

  • 53.

    Blackwell, B. F. et al. Social information affects Canada goose alert and escape responses to vehicle approach: Implications for animal–vehicle collisions. PeerJ 7, e8164. https://doi.org/10.7717/peerj.8164 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Blackwell, B. F., Seamans, T. W., Fernández-Juricic, E., Devault, T. L. & Outward, R. J. Avian responses to aircraft in an airport environment. J. Wildl. Manag. 83, 893–901 (2019).

    Article 

    Google Scholar 

  • 55.

    Beauchamp, G. Social predation: how group living benefits predators and prey. (Elsevier, 2013).

  • 56.

    Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. The R Journal 5, 39–52 (2013).

    Article 

    Google Scholar 

  • 57.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823(2014).

  • 58.

    DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernandez-Juricic, E. Speed kills: Ineffective avian escape responses to oncoming vehicles. Proc. R. Soc. B. 282, 20142188. https://doi.org/10.1098/rspb.2014.2188 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    DeVault, T. L. et al. Can experience reduce collisions between birds and vehicles?. J. Zool. 301, 17–22. https://doi.org/10.1111/jzo.12385 (2016).

    Article 

    Google Scholar 

  • 60.

    Rhoades, E. & Blumstein, D. T. Predicted fitness consequences of threat-sensitive hiding behavior. Behav. Ecol. 18, 937–943 (2007).

    Article 

    Google Scholar 

  • 61.

    Cooper Jr, W. E. Factors affecting risk and cost of escape by the broad-headed skink (Eumeces laticeps): predator speed, directness of approach, and female presence. Herpetologica, 464–474 (1997).

  • 62.

    Cooper, W. E. Jr., Hawlena, D. & Pérez-Mellado, V. Interactive effect of starting distance and approach speed on escape behavior challenges theory. Behav. Ecol. 20, 542–546 (2009).

    Article 

    Google Scholar 

  • 63.

    Fernández-Juricic, E., Jimenez, M. D. & Lucas, E. Alert distance as an alternative measure of bird tolerance to human disturbance: Implications for park design. Environ. Conserv. 28, 263–269. https://doi.org/10.1017/S0376892901000273 (2001).

    Article 

    Google Scholar 

  • 64.

    Dill, L. M. The escape response of the zebra danio (Brachydanio rerio) I. The stimulus for escape. Anim. Behav. 22, 711–722 (1974).

    Article 

    Google Scholar 

  • 65.

    Sun, H. & Frost, B. J. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat. Neurosci. 1, 296–303 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Pfeiffer, M. B., Iglay, R. B., Seamans, T. W., Blackwell, B. F. & DeVault, T. L. Deciphering interactions between white-tailed deer and approaching vehicles. Transp. Res. D Transp. Environ. 79, 102251. https://doi.org/10.1016/j.trd.2020.102251 (2020).

    Article 

    Google Scholar 

  • 67.

    Collins, S. A., Giffin, G. J. & Strong, W. T. Using flight initiation distance to evaluate responses of colonial-nesting Great Egrets to the approach of an unmanned aerial vehicle. J. Field. Ornithol. 90, 382–390 (2019).

    Article 

    Google Scholar 

  • 68.

    Kane, S. A., Fulton, A. H. & Rosenthal, L. J. When hawks attack: Animal-borne video studies of goshawk pursuit and prey-evasion strategies. J. Exp. Biol. 218, 212–222 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6 (2002).

  • 70.

    Lambertucci, S. A., Shepard, E. L. & Wilson, R. P. Human-wildlife conflicts in a crowded airspace. Science 348, 502–504 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Ballejo, F., Plaza, P., Speziale, K. L., Lambertucci, A. P. & Lambertucci, S. A. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas. Sci. Total Environ. 755, 142421. https://doi.org/10.1016/j.scitotenv.2020.142421 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Conover, M. R. Resolving human-wildlife conflicts: the science of wildlife damage management. (CRC press, 2001).

  • 73.

    Pfeiffer, M. B., Blackwell, B. F. & DeVault, T. L. Collective effect of landfills and landscape composition on bird–aircraft collisions. Hum.–Wildl. Interact. 14, 43–54 (2020).

  • 74.

    Dolbeer, R. A. Aerodrome bird hazard prevention: case study at John F. Kennedy International Airport. (1999).

  • 75.

    Blackwell, B. F. et al. Exploiting avian vision with aircraft lighting to reduce bird strikes. J. Appl. Ecol. 49, 758–766 (2012).

    Article 

    Google Scholar 

  • 76.

    Goller, B., Blackwell, B. F., DeVault, T. L., Baumhardt, P. E. & Fernández-Juricic, E. Assessing bird avoidance of high-contrast lights using a choice test approach: Implications for reducing human-induced avian mortality. PeerJ 6, e5404 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    Assessing the origin, genetic structure and demographic history of the common pheasant (Phasianus colchicus) in the introduced European range