Christie, K. S., Gilbert, S. L., Brown, C. L., Hatfield, M. & Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 14, 241–251 (2016).
Google Scholar
Anderson, K. & Gaston, K. J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11, 138–146 (2013).
Google Scholar
Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Syst. 3, 137–155 (2015).
Google Scholar
Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 4, 1015–1020 (2003).
Wiegmann, D. A. & Taneja, N. Analysis of injuries among pilots involved in fatal general aviation airplane accidents. Accid. Anal. Prev. 35, 571–577 (2003).
Google Scholar
Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: first experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).
Google Scholar
Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 22574. https://doi.org/10.1038/srep22574 (2016).
Google Scholar
Egan, C. C., Blackwell, B. F., Fernández-Juricic, E. & Klug, P. E. Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?. The Condor 122, 1–15. https://doi.org/10.1093/condor/duaa014 (2020).
Google Scholar
Hahn, N. et al. Unmanned aerial vehicles mitigate human–elephant conflict on the borders of Tanzanian Parks: A case study. Oryx 51, 513–516 (2017).
Google Scholar
FAA. Protocol for the Conduct and Review of Wildlife Hazard Site Visits, Wildlife Hazard Assessments, and Wildlife Hazard Management Plan. (2018).
Dolbeer, R. A., Begier, M. J., Miller, P. R., Weller, J. R. & Anderson, A. L. Wildlife strikes to civil aircraft in the United States 1990–2019. 124 (Federal Aviation Administration, Washington, D.C., USA, 2021).
Bivings, A. in Bird Strike Committee Europe. 481–487.
Wandrie, L. J., Klug, P. E. & Clark, M. E. Evaluation of two unmanned aircraft systems as tools for protecting crops from blackbird damage. Crop Prot. 117, 15–19 (2019).
Google Scholar
Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).
Google Scholar
Cooper, W. E., Samia, D. S. & Blumstein, D. T. Chapter five-FEAR, spontaneity, and artifact in economic escape theory: A review and prospectus. Adv. Study Behav. 47, 147–179 (2015).
Google Scholar
Lima, S. L., Blackwell, B. F., DeVault, T. L. & Fernandez-Juricic, E. Animal reactions to oncoming vehicles: A conceptual review. Biol. Rev. Camb. Philos. Soc. 90, 60–76. https://doi.org/10.1111/brv.12093 (2015).
Google Scholar
Bernhardt, G. E., Blackwell, B. F., DeVault, T. L. & Kutschbach-Brohl, L. Fatal injuries to birds from collisions with aircraft reveal anti-predator behaviours. Ibis https://doi.org/10.1111/j.1474-919X.2010.01043.x (2010).
Google Scholar
McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 4, e1831 (2016).
Google Scholar
Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, e0178448 (2017).
Google Scholar
Tinbergen, N. Social releasers and the experimental method required for their study. Wilson Bull., 6–51 (1948).
Kirk, D. A. & Mossman, M. J. in Bird of the World (ed Cornell Lab of Ornithology) (Poole, A.F.,Gill, F.B., Ithaca, NY, USA, 2020).
FAA. Wildlife Strike Database, wildlife.faa.gov (2020).
DeVault, T. L. et al. Estimating interspecific economic risk of bird strikes with aircraft. Wildl. Soc. Bull. 42, 94–101 (2018).
Google Scholar
DeVault, T. L., Blackwell, B. F., Seamans, T. W. & Belant, J. L. Identification of off airport interspecific avian hazards to aircraft. J. Wildl. Manag. 80, 746–752 (2016).
Google Scholar
Kluever, B. M., Pfeiffer, M. B., Barras, S. C., Dunlap, B. G. & Humberg, L. A. Black vulture conflict and management in the United States: Damage trends, management overview, and research needs. Hum. Wildl. Interact. 14, 8 (2020).
Walters, J. R. Anti-predatory behavior of lapwings: field evidence of discriminative abilities. Wilson Bull., 49–70 (1990).
Septon, G. Peregrine falcon strikes turkey vulture. Passenger Pigeon 53, 192 (1991).
Coleman, J. S. & Fraser, J. D. Predation on black and Turkey vultures. Wilson Bull. 98, 600–601 (1986).
Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).
Google Scholar
Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 9, 2142. https://doi.org/10.1038/s41598-019-38610-x (2019).
Google Scholar
Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).
Google Scholar
Belant, J. L., Seamans, T. W., Gabrey, S. W. & Dolbeer, R. A. Abundance of gulls and other birds at landfills in northern Ohio. Am. Midl. Nat. 134, 30–40 (1995).
Google Scholar
Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).
Google Scholar
DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernández-Juricic, E. Effects of vehicle speed on flight initiation by turkey vultures: implications for bird-vehicle collisions. PLoS ONE 9, e87944 (2014).
Google Scholar
Doppler, M. S., Blackwell, B. F., DeVault, T. L. & Fernández-Juricic, E. Cowbird responses to aircraft with lights tuned to their eyes: Implications for bird–aircraft collisions. The Condor 117, 165–177 (2015).
Google Scholar
Blackwell, B. F., Fernandez-Juricic, E., Seamans, T. W. & Dolan, T. Avian visual system configuration and behavioural response to object approach. Anim. Behav. 77, 673–684 (2009).
Google Scholar
DeVault, T. L., Reinhart, B. D., Brisbin, I. L., Rhodes, O. E. & Bechard. Flight Behavior of Black and Turkey Vultures: Implications for reducing bird–aircraft collisions. J. Wildl. Manag. 69, 601–608. https://doi.org/10.2193/0022-541X(2005)069[0601:FBOBAT]2.0.CO;2 (2005).
Runyan, A. M. & Blumstein, D. T. Do individual differences influence flight initiation distance?. J. Wildl. Manag. 68, 1124–1129 (2004).
Google Scholar
Rebolo-Ifrán, N., Grilli, M. G. & Lambertucci, S. A. Drones as a threat to wildlife: YouTube complements science in providing evidence about their effect. Environ. Conserv. 46, 205–210 (2019).
Google Scholar
Fernández-Juricic, E., Deisher, M., Stark, A. C. & Randolet, J. Predator detection is limited in microhabitats with high light intensity: An experiment with Brown-headed Cowbirds. Ethology 118, 341–350 (2012).
Google Scholar
Koch, D. D. Glare and contrast sensitivity testing in cataract patients. J. Cataract Refract. Surg. 15, 158–164 (1989).
Google Scholar
Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. Royal Soc. B. 265, 351–358 (1998).
Google Scholar
Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).
Google Scholar
Hill, G. E., Hill, G. E., McGraw, K. J. & Kevin, J. Bird coloration: mechanisms and measurements. Vol. 1 (Harvard University Press, 2006).
Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M. & Shawkey, M. D. pavo: Asn R package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4, 906–913 (2013).
Lakens, D. Sample Size Justification. (2021).
Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).
Google Scholar
Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).
Google Scholar
Garamszegi, L. Z. A simple statistical guide for the analysis of behaviour when data are constrained due to practical or ethical reasons. Anim. Behav. 120, 223–234 (2016).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. (Springer Science & Business Media, 2002).
Nauman, L. E. Spatial distribution in a turkey vulture roost, The Ohio State University, (1965).
Bertram, B. C. Living in groups: predators and prey. Behavioural ecology: an evolutionary approach, 221–248 (1978).
Blackwell, B. F. et al. Social information affects Canada goose alert and escape responses to vehicle approach: Implications for animal–vehicle collisions. PeerJ 7, e8164. https://doi.org/10.7717/peerj.8164 (2019).
Google Scholar
Blackwell, B. F., Seamans, T. W., Fernández-Juricic, E., Devault, T. L. & Outward, R. J. Avian responses to aircraft in an airport environment. J. Wildl. Manag. 83, 893–901 (2019).
Google Scholar
Beauchamp, G. Social predation: how group living benefits predators and prey. (Elsevier, 2013).
Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. The R Journal 5, 39–52 (2013).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823(2014).
DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernandez-Juricic, E. Speed kills: Ineffective avian escape responses to oncoming vehicles. Proc. R. Soc. B. 282, 20142188. https://doi.org/10.1098/rspb.2014.2188 (2015).
Google Scholar
DeVault, T. L. et al. Can experience reduce collisions between birds and vehicles?. J. Zool. 301, 17–22. https://doi.org/10.1111/jzo.12385 (2016).
Google Scholar
Rhoades, E. & Blumstein, D. T. Predicted fitness consequences of threat-sensitive hiding behavior. Behav. Ecol. 18, 937–943 (2007).
Google Scholar
Cooper Jr, W. E. Factors affecting risk and cost of escape by the broad-headed skink (Eumeces laticeps): predator speed, directness of approach, and female presence. Herpetologica, 464–474 (1997).
Cooper, W. E. Jr., Hawlena, D. & Pérez-Mellado, V. Interactive effect of starting distance and approach speed on escape behavior challenges theory. Behav. Ecol. 20, 542–546 (2009).
Google Scholar
Fernández-Juricic, E., Jimenez, M. D. & Lucas, E. Alert distance as an alternative measure of bird tolerance to human disturbance: Implications for park design. Environ. Conserv. 28, 263–269. https://doi.org/10.1017/S0376892901000273 (2001).
Google Scholar
Dill, L. M. The escape response of the zebra danio (Brachydanio rerio) I. The stimulus for escape. Anim. Behav. 22, 711–722 (1974).
Google Scholar
Sun, H. & Frost, B. J. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat. Neurosci. 1, 296–303 (1998).
Google Scholar
Pfeiffer, M. B., Iglay, R. B., Seamans, T. W., Blackwell, B. F. & DeVault, T. L. Deciphering interactions between white-tailed deer and approaching vehicles. Transp. Res. D Transp. Environ. 79, 102251. https://doi.org/10.1016/j.trd.2020.102251 (2020).
Google Scholar
Collins, S. A., Giffin, G. J. & Strong, W. T. Using flight initiation distance to evaluate responses of colonial-nesting Great Egrets to the approach of an unmanned aerial vehicle. J. Field. Ornithol. 90, 382–390 (2019).
Google Scholar
Kane, S. A., Fulton, A. H. & Rosenthal, L. J. When hawks attack: Animal-borne video studies of goshawk pursuit and prey-evasion strategies. J. Exp. Biol. 218, 212–222 (2015).
Google Scholar
Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6 (2002).
Lambertucci, S. A., Shepard, E. L. & Wilson, R. P. Human-wildlife conflicts in a crowded airspace. Science 348, 502–504 (2015).
Google Scholar
Ballejo, F., Plaza, P., Speziale, K. L., Lambertucci, A. P. & Lambertucci, S. A. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas. Sci. Total Environ. 755, 142421. https://doi.org/10.1016/j.scitotenv.2020.142421 (2021).
Google Scholar
Conover, M. R. Resolving human-wildlife conflicts: the science of wildlife damage management. (CRC press, 2001).
Pfeiffer, M. B., Blackwell, B. F. & DeVault, T. L. Collective effect of landfills and landscape composition on bird–aircraft collisions. Hum.–Wildl. Interact. 14, 43–54 (2020).
Dolbeer, R. A. Aerodrome bird hazard prevention: case study at John F. Kennedy International Airport. (1999).
Blackwell, B. F. et al. Exploiting avian vision with aircraft lighting to reduce bird strikes. J. Appl. Ecol. 49, 758–766 (2012).
Google Scholar
Goller, B., Blackwell, B. F., DeVault, T. L., Baumhardt, P. E. & Fernández-Juricic, E. Assessing bird avoidance of high-contrast lights using a choice test approach: Implications for reducing human-induced avian mortality. PeerJ 6, e5404 (2018).
Google Scholar
Source: Ecology - nature.com