Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
Google Scholar
Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).
Google Scholar
Whittaker, R. H. Communities and Ecosystems (MacMillan Publishing, 1975).
Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).
Google Scholar
Pulliam, H. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
Google Scholar
Hanski, I. & Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Linn. Soc. 42, 3–16 (1991).
Google Scholar
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).
Google Scholar
Tuomisto, H. & Ruokolainen, K. Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87, 2697–2708 (2006).
Google Scholar
Astorga, A. et al. Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules?: Decay of similarity in freshwater communities. Glob. Ecol. Biogeogr. 21, 365–375 (2012).
Google Scholar
Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
Google Scholar
Nekola, J. C. & Brown, J. H. The wealth of species: Ecological communities, complex systems and the legacy of Frank Preston. Ecol. Lett. 10, 188–196 (2007).
Google Scholar
Hubbell, S. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, 2001).
Fodelianakis, S., Valenzuela-Cuevas, A., Barozzi, A. & Daffonchio, D. Direct quantification of ecological drift at the population level in synthetic bacterial communities. ISME J. https://doi.org/10.1038/s41396-020-00754-4 (2020).
Google Scholar
Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: The continuum hypothesis: Reconciling niche and neutrality. Ecol. Lett. 9, 399–409 (2006).
Google Scholar
Legendre, P., Borcard, D. & Peres-Neto, P. R. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435–450 (2005).
Google Scholar
Wilson, K. A., Cabeza, M. & Klein, C. J. Fundamental concepts of spatial conservation prioritization. In Spatial Conservation Prioritization: Quantitative Methods & Computational Tools (eds Moilanen, A. et al.) 16–27 (Oxford University Press, 2009).
Morlon, H. et al. A general framework for the distance-decay of similarity in ecological communities. Ecol. Lett. 11, 904–917 (2008).
Google Scholar
Tuomisto, H. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241–244 (2003).
Google Scholar
Gómez-Rodríguez, C. & Baselga, A. Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography 41, 1825–1834 (2018).
Google Scholar
Stella, J. C., Rodríguez-González, P. M., Dufour, S. & Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 719(1), 291–315 (2013).
Google Scholar
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
Google Scholar
Rouquette, J. R. et al. Species turnover and geographic distance in an urban river network. Divers. Distrib. 19, 1429–1439 (2013).
Google Scholar
Kuglerová, L., Jansson, R., Sponseller, R. A., Laudon, H. & Malm-Renöfält, B. Local and regional processes determine plant species richness in a river-network metacommunity. Ecology 96, 381–391 (2015).
Google Scholar
Zhang, Z., Gao, J. & Cai, Y. The effects of environmental factors and geographic distance on species turnover in an agriculturally dominated river network. Environ. Monit. Assess. 191, 201 (2019).
Google Scholar
Jost, L., Chao, A. & Chazdon, R. Compositional similarity and beta diversity. In Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. & McGill, B.) 66–84 (Oxford University Press, 2011).
Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).
Google Scholar
Miranda, P., Coelho, F., Tomé, A. & Valente, M. Climate Change in Portugal. Scenarios, Impacts and Adaptation Measures—SIAM Project (Gradiva, 2002).
CIS-WFD. River and lakes—Typology, reference conditions and classification systems, Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance document no 10. 94 (2003).
INAG. Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a DQA—Protocolo de amostragem e análise para os macrófitos (2008).
Agência Portuguesa do Ambiente. Plano de Gestão da Região Hidrográfica do Tejo, Relatório técnico, Versão Extensa Parte 2—Caracterização e Diagnóstico da Região Hidrográfica. (2012).
Oksanen, J. et al. vegan: Community Ecology Package—Version 2.7-7. https://CRAN.R-project.org/package=vegan (2021).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Peterson, E. E., Theobald, D. M. & Ver Hoef, J. M. Geostatistical modelling on stream networks: Developing valid covariance matrices based on hydrologic distance and stream flow. Freshw. Biol. 52, 267–279 (2007).
Google Scholar
Csardi, G. & Nepusz, T. The Igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2005).
Lu, B., Sun, H., Harris, P., Xu, M. & Charlton, M. Shp2graph: Tools to convert a spatial network into an Igraph graph in R. ISPRS Int. J. Geo-Inf. 7, 293 (2018).
Google Scholar
Vogt, J. & Foisneau, S. CCM River and Catchment Database—Version 2.0 Analysis Tools. (2007).
Monteiro-Henriques, T. et al. Bioclimatological mapping tackling uncertainty propagation: Application to mainland Portugal. Int. J. Climatol. 36, 400–411 (2016).
Google Scholar
Ward, J. V. & Stanford, J. A. The serial discontinuity concept: Extending the model to floodplain rivers. Regul. Rivers Res. Manag. 10, 159–168 (1995).
Google Scholar
Dias, F. S., Betancourt, M., Rodríguez-González, P. M. & Borda-de-Água, L. A Bayesian Approach for Analysing Pairwise Comparisons: A Case Study Using Species Composition Similarity (2021) https://doi.org/10.32942/osf.io/sn5jr.
Stan Development Team. Stan Functions Reference Version 2.25. (2020).
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2020).
Google Scholar
Rodríguez-González, P. M., Ferreira, M. T., Albuquerque, A., Santo, D. E. & Rego, P. R. Spatial variation of wetland woods in the latitudinal transition to arid regions: A multiscale approach. J. Biogeogr. 35, 1498–1511 (2008).
Google Scholar
Stan Development Team. RStan: the R interface to Stan Version 2.21. https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started (2020).
Betancourt, M. Hierarchical Modeling (2020).
Muneepeerakul, R., Weitz, J. S., Levin, S. A., Rinaldo, A. & Rodriguez-Iturbe, I. A neutral metapopulation model of biodiversity in river networks. J. Theor. Biol. 245, 351–363 (2007).
Google Scholar
Thompson, R. & Townsend, C. A truce with neutral theory: Local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates: Neutral theory and local determinism. J. Anim. Ecol. 75, 476–484 (2006).
Google Scholar
Steinitz, O., Heller, J., Tsoar, A., Rotem, D. & Kadmon, R. Environment, dispersal and patterns of species similarity. J. Biogeogr. 33, 1044–1054 (2006).
Google Scholar
Nilsson, C., Brown, R. L., Jansson, R. & Merritt, D. M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. Camb. Philos. Soc. 85, 837–858 (2010).
Google Scholar
Gelmi-Candusso, T. A. et al. Estimating seed dispersal distance: A comparison of methods using animal movement and plant genetic data on two primate-dispersed Neotropical plant species. Ecol. Evol. 9, 8965–8977 (2019).
Google Scholar
Rodríguez-González, P. M. et al. A spatial stream-network approach assists in managing the remnant genetic diversity of riparian forests. Sci. Rep. 9, 6741 (2019).
Google Scholar
Ward, J. V., Tockner, K., Arscott, D. B. & Claret, C. Riverine landscape diversity. Freshw. Biol. 47, 517–539 (2002).
Google Scholar
Fraaije, R. G. A. et al. Spatial patterns of water-dispersed seed deposition along stream riparian gradients. PLoS ONE 12, e0185247 (2017).
Google Scholar
Bendix, J. Flood disturbance and the distribution of riparian species diversity. Geogr. Rev. 87, 468–483 (1997).
Google Scholar
Kuglerová, L., Dynesius, M., Laudon, H. & Jansson, R. Relationships between plant assemblages and water flow across a boreal forest landscape: A comparison of liverworts, mosses, and vascular plants. Ecosystems 19, 170–184 (2016).
Google Scholar
Wubs, E. R. J. et al. Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshw. Biol. 61, 580–595 (2016).
Google Scholar
Carrera, M., Gyakum, J. & Lin, C. Observational study of wind channeling within the St. Lawrence river valley. J. Appl. Meteorol. Climatol. 48, 2341–2361 (2009).
Google Scholar
Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc. R. Soc. B Biol. Sci. 276, 3081–3087 (2009).
Google Scholar
Soomers, H. et al. Wind and water dispersal of wetland plants across fragmented landscapes. Ecosystems 16, 434–451 (2013).
Google Scholar
Jones, K. N. Analysis of pollinator foraging: Tests for non-random behaviour. Funct. Ecol. 11, 255–259 (1997).
Google Scholar
Ferreira, M. T. & Aguiar, F. Riparian and aquatic vegetation in Mediterranean-type streams (western Iberia). Limnetica 25, 411–424 (2005).
Petts, G. E. & Amoros, C. Fluvial hydrosystems: a management perspective. In The Fluvial Hydrosystems (eds Petts, G. E. & Amoros, C.) 263–278 (Springer Netherlands, 1996) https://doi.org/10.1007/978-94-009-1491-9_12.
Google Scholar
Benda, L. et al. The network dynamics hypothesis: How channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).
Google Scholar
QGIS Development Team. QGIS Geographic Information System-Version 3.20.3. (2021).
Source: Ecology - nature.com