Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
IPCC. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (2014).
Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. 97, 1630–1633 (2000).
Google Scholar
Adamík, P. & Král, M. Climate- and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J. Zool. 275, 209–215 (2008).
Google Scholar
Ozgul, A. et al. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482–485 (2010).
Google Scholar
Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Chang. Biol. 17, 2455–2469 (2011).
Google Scholar
Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83 (2009).
Google Scholar
Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B Biol. Sci. 265, 1867–1870 (1998).
Google Scholar
Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang. Biol. 16, 3304–3313 (2010).
Google Scholar
Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Chang. Biol. 24, 4521–4531 (2018).
Google Scholar
Sheriff, M. J., Boonstra, R., Palme, R., Loren Buck, C. & Barnes, B. M. Coping with differences in snow cover: The impact on the condition, physiology and fitness of an arctic hibernator. Conserv. Physiol. 5, 1–12 (2017).
Google Scholar
Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2075 (2000).
Google Scholar
IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change. (2012).
Krause, J. S. et al. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic. Gen. Comp. Endocrinol. 237, 10–18 (2016).
Google Scholar
Latimer, C. E. & Zuckerberg, B. How extreme is extreme? Demographic approaches inform the occurrence and ecological relevance of extreme events. Ecol. Monogr. 89, 1–15 (2019).
Google Scholar
Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).
Google Scholar
Bailey, L. D. & van de Pol, M. Tackling extremes: Challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96 (2016).
Google Scholar
Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B Biol. Sci. 275, 419–425 (2008).
Google Scholar
Boucek, R. E. & Rehage, J. S. Climate extremes drive changes in functional community structure. Glob. Chang. Biol. 20, 1821–1831 (2014).
Google Scholar
Hale, S. et al. Fire and climatic extremes shape mammal distributions in a fire-prone landscape. Divers. Distrib. 22, 1127–1138 (2016).
Google Scholar
Frederiksen, M., Daunt, F., Harris, M. P. & Wanless, S. The demographic impact of extreme events: Stochastic weather drives survival and population dynamics in a long-lived seabird. J. Anim. Ecol. 77, 1020–1029 (2008).
Google Scholar
Wingfield, J. C., Kelley, J. P. & Angelier, F. What are extreme environmental conditions and how do organisms cope with them?. Curr. Zool. 57, 363–374 (2011).
Google Scholar
Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B Biol. Sci. 280, 1–10 (2013).
Sheriff, M. J., Richter, M. M., Buck, C. L. & Barnes, B. M. Changing seasonality and phenological responses of free-living male Arctic ground squirrels: The importance of sex. Philos. Trans. R. Soc. B Biol. Sci. 368, (2013).
Michener, G. R. & Locklear, L. Differential costs of reproductive effort for male and female Richardson’s ground squirrels. Ecology 71, 855–868 (1990).
Google Scholar
Williams, C. T., Barnes, B. M., Kenagy, G. J. & Buck, C. L. Phenology of hibernation and reproduction in ground squirrels: Integration of environmental cues with endogenous programming. J. Zool. 292, 112–124 (2014).
Google Scholar
Michener, G. R. Age, sex, and species differences in the annual cycles of ground-dwelling sciurids: Implications for sociality. in The biology of ground-dwelling squirrels: annual cycles, behavioral ecology, and sociality (eds. Murie, J. O. & Michener, G. R.) 81–107 (University of Nebraska Press, Lincoln, 1984).
Kenagy, G. J., Sharbaugh, S. M. & Nagy, K. A. Annual cycle of energy and time expenditure in a golden-mantled ground squirrel population. Oecologia 78, 269–282 (1989).
Google Scholar
Michener, G. R. Sexual Differences in over-winter torpor patterns of Richardson’s ground squirrels in natural hibernacula. Oecologia 89, 397–406 (1992).
Google Scholar
Michener, G. R. Effect of climatic conditions on the annual activity and hibernation cycle of Richardson’s ground squirrels and Columbian ground squirrels. Can. J. Zool. 55, 693–703 (1977).
Google Scholar
Michener, G. R. The circannual cycle of Richardson’s ground squirrels in southern Alberta. J. Mammal. 60, 760–768 (1979).
Google Scholar
Sheriff, M. J., Buck, C. L. & Barnes, B. M. Autumn conditions as a driver of spring phenology in a free-living arctic mammal. Clim. Chang. Responses 2, 1–7 (2015).
Google Scholar
Edic, M. N., Martin, J. G. A. & Blumstein, D. T. Heritable variation in the timing of emergence from hibernation. Evol. Ecol. 34, 763–776 (2020).
Google Scholar
Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).
Google Scholar
Dobson, F. S., Lane, J. E., Low, M. & Murie, J. O. Fitness implications of seasonal climate variation in Columbian ground squirrels. Ecol. Evol. 6, 5614–5622 (2016).
Google Scholar
Armitage, K. B. Climate change and the conservation of marmots. Nat. Sci. 05, 36–43 (2013).
Neuhaus, P., Bennett, R. & Hubbs, A. Effects of a late snowstorm and rain on survival and reproductive success in Columbian ground squirrels (Spermophilus columbianus). Can. J. Zool. 77, 879–884 (1999).
Google Scholar
Williams, C. T. et al. Sex-dependent phenological plasticity in an arctic hibernator. Am. Nat. 190, 854–859 (2017).
Google Scholar
Barnes, B. M. Relationship between hibernation and reproduction in male ground squirrels. in Adaptations to the Cold: Tenth International Hibernation Symposium (eds. Geiser, F., Hulbert, A. J. & Nicol, S. C.) 71–80 (University of New England Press, 1996).
Lee, T. M., Pelz, K., Licht, P. & Zucker, I. Testosterone influences hibernation in golden-mantled ground squirrels. Am. J. Physiol. Regul. Integr. Comput. Physiol. 259, 760–767 (1990).
Google Scholar
Richter, M. M., Barnes, B. M., Reilly, K. M. O., Fenn, A. M. & Buck, C. L. The influence of androgens on hibernation phenology of free-livingmale arctic ground squirrels. Horm. Behav. 89, 92–97 (2017).
Google Scholar
Michener, G. R. Spring emergence schedules and vernal behavior of Richardson’s ground squirrels: Why do males emerge from hibernation before females?. Behav. Ecol. Sociobiol. 14, 29–38 (1983).
Google Scholar
Wells, L. J. Seasonal sexual Rhythm and its experimental modification in the male of the thirteen-lined ground squirrel (Citellus tridecemlineatus). Anat. Rec. 62, 409–447 (1935).
Google Scholar
Michener, G. R. & Locklear, L. Over-winter weight loss by Richardson’s ground squirrels in relation to sexual differences in mating effort. J. Mammal. 71, 489–499 (1990).
Google Scholar
Poiani, A. Complexity of seminal fluid: A review. Behav. Ecol. Sociobiol. 60, 289–310 (2006).
Google Scholar
Michener, G. R. Estrous and gestation periods in Richardson’s ground squirrels. J. Mammal. 61, 531–534 (1980).
Google Scholar
Michener, G. R. Chronology of reproductive events for female Richardson’s ground aquirrels. J. Mammal. 66, 280–288 (1985).
Google Scholar
Michener, G. R. & McLean, I. G. Reproductive behaviour and operational sex ratio in Richardson’s ground squirrels. Anim. Behav. 52, 743–758 (1996).
Google Scholar
Hare, J. F., Todd, G. & Untereiner, W. A. Multiple mating results in multiple paternity in Richardson’s Ground Squirrels Spermophilus richardsonii. Can. Field Nat. 118, 90–94 (2004).
Google Scholar
Grumm, R., Arnott, J. & Halblaub, J. The epic eastern North American warm episode of March 2012. J. Oper. Meteorol. 2, 36–50 (2014).
Google Scholar
Environment and Climate Change Canada (ECCC). Top ten weather stories for 2012: story four—March’s meteorological mildness. (2017). Available at: https://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=70B4A3E9-1. (Accessed: 20th May 2020)
Wilson, D. F. & Hare, J. F. Ground squirrel uses ultrasonic alarms. Nature 430, 523 (2004).
Google Scholar
Waterman, J. M., Macklin, G. F. & Enright, C. Sex-biased parasitism in Richardson’s ground squirrels (Urocitellus richardsonii) depends on the parasite examined. Can. J. Zool. 92, 73–79 (2014).
Google Scholar
Murie, J. O. & Harris, M. A. Annual variation of spring emergence and breeding in Columbian ground squirrels (Spermophilus columbianus). J. Mammal. 63, 431–439 (1982).
Google Scholar
Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).
Google Scholar
Gannon, W. L. & Sikes, R. S. Guidelines of the American society of mammalogists for the use of wild mammals in research. J. Mammal. 88, 809–823 (2007).
Google Scholar
Zucker, I. & Boshes, M. Circannual body weight rhythms of ground squirrels: Role of gonadal hormones. Am. J. Physiol. Regul. Int. Comput. Physiol. 12, 546–551 (1982).
Google Scholar
Boonstra, R., Hubbs, A. H., Lacey, E. A. & McColl, C. J. Seasonal changes in glucocorticoid and testosterone concentrations in free-living arctic ground squirrels from the boreal forest of the Yukon. Can. J. Zool. 79, 49–58 (2001).
Google Scholar
Bottini Luzardo, M., Centurion Castro, F., Alfaro Gamboa, M., Lopez, A. & Ake Lopez, A. Osmolarity of coconut water (Cocos nucifera) based diluents and their effect over viability of frozen boar semen. Am. J. Anim. Vet. Sci. 5, 187–191 (2010).
Google Scholar
Mollineau, W. M., Adogwa, A. O. & Garcia, G. W. Liquid and frozen storage of agouti (Dasyprocta leporina) semen extended with UHT milk, unpasteurized coconut water, and pasteurized coconut water. Vet. Med. Int. 2011, 1–5 (2011).
Google Scholar
Schulte-Hostedde, A. I., Millar, J. S. & Hickling, G. J. Evaluating body condition in small mammals. Can. J. Zool. 79, 1021–1029 (2001).
Google Scholar
Møller, A. P. & Birkhead, T. R. Copulation behaviour in mammals: Evidence that sperm competition is widespread. Biol. J. Linn. Soc. 38, 119–131 (1989).
Google Scholar
Sugg, D. W. & Chesser, R. K. Effective population sizes with multiple paternity. Genetics 137, 1147–1155 (1994).
Google Scholar
Murie, J. O. & Harris, M. A. Territoriality and dominance in male Columbian ground squirrels (Spermophilus columbianus). Can. J. Zool. 56, 2402–2412 (1978).
Google Scholar
Morton, M. L. & Gallup, J. S. Reproductive cycle of the Belding ground squirrel (Spermophilus beldingi beldingi): Seasonal and age differences. Gt. Basin Nat. 35, 427–433 (1975).
Barnes, B. M., Kretzmann, M., Licht, P. & Zucker, I. The influence of hibernation on testis growth and spermatogenesis in the golden-mantled ground squirrel Spermophilus lateralis. Biol. Reprod. 35, 1289–1297 (1986).
Google Scholar
Source: Ecology - nature.com