Alexander JS, Zhang C, Shi K, Riordan P (2016) A granular view of a snow leopard population using camera traps in Central China. Biol Conserv 197:27–31
Aryal A, Brunton D, Ji W, Karmacharya D, McCarthy T, Bencini R et al. (2014) Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. J Mammal 95:871–881
Atzeni L, Cushman SA, Bai D, Wang J, Chen P, Shi K et al. (2020) Meta-replication, sampling bias, and multi-scale model selection: a case study on snow leopard (Panthera uncia) in western China. Ecol Evol 10:7686–7712
Google Scholar
Bai D-F, Chen P-J, Atzeni L, Cering L, Li Q, Shi K (2018) Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool Res 39:373–386
Google Scholar
Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds (2016) Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UK
Bauman D, Vleminckx J, Hardy OJ, Drouet T (2018c) Testing and interpreting the shared space-environment fraction in variation partitioning analyses of ecological data. Oikos 128:274–285
Bauman D, Drouet T, Dray S, Vleminckx J (2018b) Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography 41:1638–1649
Bauman D, Drouet T, Fortin M, Dray S (2018a) Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99:2159–2166
Google Scholar
Benone NL, Soares BE, Lobato CMC, Seabra LB, Bauman D, Montag LF de A (2020) How modified landscapes filter rare species and modulate the regional pool of ecological traits? Hydrobiologia
Blair C, Weigel DE, Lazik M, Keeley AT, Walker FM, Landguth E et al. (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833
Google Scholar
Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632
Google Scholar
Bothwell HM, Cushman SA, Woolbright SA, Hersch-Green EI, Evans LM, Whitham TG et al. (2017) Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol Ecol 26:5114–5132
Google Scholar
Breyne P, Mergeay J, Casaer J (2014) Roe deer population structure in a highly fragmented landscape. Eur J Wildl Res 60:909–917
Bruggeman DJ, Wiegand T, Fernández N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol Ecol 19:3679–3691
Google Scholar
Burgess SM, Garrick RC (2020) Regional replication of landscape genetics analyses of the Mississippi slimy salamander, Plethodon mississippi. Landsc Ecol 35:337–351
Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856
Google Scholar
Chambers SM (1995) Spatial structure, genetic variation, and the neighborhood adjustment to effective population size. Conserv Biol 9:1312–1315
Google Scholar
Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205
Google Scholar
Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Heredity 100:106–113
Google Scholar
Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979
Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27:369–380
Cushman SA, Shirk AJ, Landguth EL (2013) Landscape genetics and limiting factors. Conserv Genet 14:263–274
Cushman SA, McRae BH, McGarigal K (2015) Basics of landscape ecology: an introduction to landscapes and population processes for landscape geneticists. In: Balkhenol N, Cushman S, Storfer A, Waits L (Eds) Landscape genetics: concepts, methods, applications. Wiley, Ofxord, UK, p 11–34
Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Naturalist 168:486–499
Dalongeville A, Andrello M, Mouillot D, Lobreaux S, Fortin M, Lasram F et al. (2018) Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl 11:1437–1447
Google Scholar
Dharmarajan G, Beasley JC, Fike JA, Rhodes OE (2014) Effects of landscape, demographic and behavioral factors on kin structure: testing ecological predictions in a mesopredator with high dispersal capability. Anim Conserv 17:225–234
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214
Google Scholar
Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20
Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493
Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, et al. (2020) adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. https://CRAN.R-project.org/package=adespatial
Evans JS (2020) spatialEco. R package version 1.3-1, https://github.com/jeffreyevans/spatialEco
Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25:104–120
Google Scholar
François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784
Google Scholar
Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508
Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140
Galpern P, Peres-Neto PR, Polfus J, Manseau M (2014) MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol Evolution 5:1116–1120
Galpern P, Manseau M, Hettinga P, Smith K, Wilson P (2012) Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 12:771–778
Google Scholar
Guerrero J, Byrne AW, Lavery J, Presho E, Kelly G, Courcier EA et al. (2018) The population and landscape genetics of the European badger (Meles meles) in Ireland. Ecol Evol 8:10233–10246
Google Scholar
Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756
Google Scholar
Hearn AJ, Cushman SA, Goossens B, Ross J, Macdonald EA, Hunter LTB et al. (2019) Predicting connectivity, population size and genetic diversity of Sunda clouded leopards across Sabah, Borneo. Landsc Ecol 34:275–290
Hein C, Moniem HEA, Wagner HH (2021) Can we compare effect size of spatial genetic structure between studies and species using moran eigenvector maps? Frontiers. Ecol Evol 9:612718
Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214
Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968
Janecka J, Jackson R, Yuquang Z et al. (2008) Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv 11:401–411
Janecka JE, Janecka JE, Yu-Guang Z, Di-Qiang L, Munkhtsog B, Bayaraa M et al. (2017) Range-wide snow leopard phylogeography supports three subspecies. J Hered 108:597–607
Google Scholar
Johansson Ö, Rauset G, Samelius G, McCarthy T, Andrén H, Tumursukh L et al. (2016) Land sharing is essential for snow leopard conservation. Biol Conserv 203:1–7
Johansson Ö, Koehler G, Rauset G, Samelius G, Andrén H, Mishra C et al. (2018) Sex-specific seasonal variation in puma and snow leopard home range utilization. Ecosphere 9(8):e02371. https://doi.org/10.1002/ecs2.2371.
Google Scholar
Johansson Ö, Ausilio G, Low M, Lkhagvajav P, Weckworth B, Sharma K (2021) The timing of breeding and independence for snow leopard females and their cubs. Mamm Biol 101:173–180
Jombart T (2008b) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405
Google Scholar
Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341
Google Scholar
Jombart T, Devillard S, Dufour A-B, Pontier D (2008a) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:hdy200834
Jombart T (2017) An introduction to adegenet 2.1.0. https://github.com/thibautjombart/adegenet/wiki/Tutorials
Karmacharya DB, Thapa K, Shrestha R, Dhakal M, Janecka JE (2011) Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Research Notes 4:516
Google Scholar
Kaszta Ż, Cushman SA, Hearn AJ, Burnham D, Macdonald EA, Goossens B et al. (2019) Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol Conserv 235:63–76
Kaszta Ż, Cushman SA, Htun S, Naing H, Burnham D, Macdonald DW (2020) Simulating the impact of Belt and Road initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa. Landsc Ecol 35:727–746
Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi (Kenya). http://www.worldagroforestry.org/output/tree-diversity-analysis
Korablev MP, Poyarkov AD, Karnaukhov AS, Zvychaynaya EYU, Kuksin AN, Malykh SV et al. (1776) Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conserv Genet 22:397–410
Kuhn A, Bauman D, Darras H, Aron S (2017) Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system. Heredity 119:207–213
Google Scholar
Landguth E, Cushman S, Schwz M, Mckelvey K, Mury M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191
Google Scholar
Landguth EL, Cushman SA (2010) cdpop: A spatially explicit cost distance population genetics program. Mol Ecol Resour 10:156–161
Google Scholar
Landguth EL, Fedy BC, Oyler-Mccance SJ, Garey AL, Emel SL, Mumma M et al. (2012) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour 12:276–284
Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277
Legendre P, Fortin M-J, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247
Li J, Weckworth BV, McCarthy TM, Liang X, Liu Y, Xing R et al. (2020) Defining priorities for global snow leopard conservation landscapes. Biol Conserv 241:108387
Macdonald EA, Cushman SA, Landguth EL, Hearn AJ, Malhi Y, Macdonald DW (2018) Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. Plos One 13:e0196974
Google Scholar
Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–35
Google Scholar
Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landscape Ecol 30:1405–1420
McCarthy TM, Fuller TK, Munkhtsog B (2005) Movements and activities of snow leopards in Southwestern Mongolia. Biol Conserv 124:527–537
McCarthy T, Mallon D, Jackson R, Zahler P, McCarthy K (2017) Panthera uncia. The IUCN red list of threatened species 2017: e.T22732A50664030. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T22732A50664030.en. Accessed 29 June 2019
Miquel C, Bellemain E, Poillot C, Bessiere J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988
Neel MC, McKelvey K, Ryman N, Lloyd MW, Bull RS, Allendorf FW et al. (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111:189–199
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2019) vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegancitat
Oyler-McCance SJ, Fedy BC, Landguth EL (2013) Sample design effects in landscape genetics. Conserv Genet 14:275–285
Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420
Google Scholar
Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. Plos Genet 2:e190
Google Scholar
Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539
Google Scholar
Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572
Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625
Google Scholar
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259
Riordan P, Cushman SA, Mallon D, Shi K, Hughes J (2016) Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography 39:419–426
Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106
Google Scholar
Ruiz-Gonzalez A, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ (2015) Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape. Mol Ecol 24:5110–5129
Google Scholar
Savary P, Foltête J, Moal H, Vuidel G, Garnier S (2021) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21:1167–1185
Google Scholar
Schwartz MK, McKelvey KS (2008) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441
Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934
Google Scholar
Shirk AJ, Cushman SA (2014) Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Front Ecol Evolution 2:62
Shirk AJ, Landguth EL, Cushman SA (2020) The effect of gene flow from unsampled demes in landscape genetic analysis. Mol Ecol Resour 21:394–403
Google Scholar
Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619
Google Scholar
Shirk AJ, Landguth EL, Cushman SA (2017a) A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol Ecol Resour 18:55–67
Shirk AJ, Landguth EL, Cushman SA (2017b) A comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Resour 17:1308–1317
Short-Bull RA, Cushman S, Mace R, Chilton T, Kendall K, Landguth E et al. (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107
Shrestha B, Kindlmann P (2020) Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Sci Rep 10:19853
Google Scholar
Stekhoven DJ (2013) missForest: nonparametric missing value imputation using random forest. R package version 1.4
Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514
Google Scholar
Wagner HH, Fortin M-J (2012) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261
Wagner HH, Fortin MJ (2016) Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds. Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UK. pp. 77–98
Wahlund S (1928) Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65–106
Wan HY, Cushman SA, Ganey JL (2019) Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas. Landsc Ecol 34:503–519
Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612
Weckworth B (2021) Snow leopard (Panthera uncia) genetics: the knowledge gaps, needs, and implications for conservation. J Indian I Sci 101:279–290
Wollenberg AL, van den (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219
Wright S (1943) Isolation by distance. Genetics 28:114–138
Google Scholar
Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59
Google Scholar
Wu S, Qinye Y, Du Z (2003) Delineation of eco-geographic regional system of China. J Geogr Sci 13:309
Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers Distrib 24:868–879
Zhang Y, Hacker C, Zhang Y, Xue Y, Wu L, Dai Y et al. (2019) An analysis of genetic structure of snow leopard populations in Sanjiang-Yuan and Qilianshan National Parks. Acta Theriologica Sin 39:442–449
Source: Ecology - nature.com