in

Evidence of spatial genetic structure in a snow leopard population from Gansu, China

  • Alexander JS, Zhang C, Shi K, Riordan P (2016) A granular view of a snow leopard population using camera traps in Central China. Biol Conserv 197:27–31

    Google Scholar 

  • Aryal A, Brunton D, Ji W, Karmacharya D, McCarthy T, Bencini R et al. (2014) Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. J Mammal 95:871–881

    Google Scholar 

  • Atzeni L, Cushman SA, Bai D, Wang J, Chen P, Shi K et al. (2020) Meta-replication, sampling bias, and multi-scale model selection: a case study on snow leopard (Panthera uncia) in western China. Ecol Evol 10:7686–7712

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai D-F, Chen P-J, Atzeni L, Cering L, Li Q, Shi K (2018) Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool Res 39:373–386

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds (2016) Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UK

  • Bauman D, Vleminckx J, Hardy OJ, Drouet T (2018c) Testing and interpreting the shared space-environment fraction in variation partitioning analyses of ecological data. Oikos 128:274–285

    Google Scholar 

  • Bauman D, Drouet T, Dray S, Vleminckx J (2018b) Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography 41:1638–1649

    Google Scholar 

  • Bauman D, Drouet T, Fortin M, Dray S (2018a) Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99:2159–2166

    PubMed 

    Google Scholar 

  • Benone NL, Soares BE, Lobato CMC, Seabra LB, Bauman D, Montag LF de A (2020) How modified landscapes filter rare species and modulate the regional pool of ecological traits? Hydrobiologia

  • Blair C, Weigel DE, Lazik M, Keeley AT, Walker FM, Landguth E et al. (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833

    PubMed 

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    PubMed 

    Google Scholar 

  • Bothwell HM, Cushman SA, Woolbright SA, Hersch-Green EI, Evans LM, Whitham TG et al. (2017) Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol Ecol 26:5114–5132

    PubMed 

    Google Scholar 

  • Breyne P, Mergeay J, Casaer J (2014) Roe deer population structure in a highly fragmented landscape. Eur J Wildl Res 60:909–917

    Google Scholar 

  • Bruggeman DJ, Wiegand T, Fernández N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol Ecol 19:3679–3691

    PubMed 

    Google Scholar 

  • Burgess SM, Garrick RC (2020) Regional replication of landscape genetics analyses of the Mississippi slimy salamander, Plethodon mississippi. Landsc Ecol 35:337–351

    Google Scholar 

  • Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856

    PubMed 

    Google Scholar 

  • Chambers SM (1995) Spatial structure, genetic variation, and the neighborhood adjustment to effective population size. Conserv Biol 9:1312–1315

    PubMed 

    Google Scholar 

  • Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205

    CAS 
    PubMed 

    Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Heredity 100:106–113

    CAS 

    Google Scholar 

  • Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979

    Google Scholar 

  • Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27:369–380

    Google Scholar 

  • Cushman SA, Shirk AJ, Landguth EL (2013) Landscape genetics and limiting factors. Conserv Genet 14:263–274

    Google Scholar 

  • Cushman SA, McRae BH, McGarigal K (2015) Basics of landscape ecology: an introduction to landscapes and population processes for landscape geneticists. In: Balkhenol N, Cushman S, Storfer A, Waits L (Eds) Landscape genetics: concepts, methods, applications. Wiley, Ofxord, UK, p 11–34

    Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Naturalist 168:486–499

    Google Scholar 

  • Dalongeville A, Andrello M, Mouillot D, Lobreaux S, Fortin M, Lasram F et al. (2018) Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl 11:1437–1447

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dharmarajan G, Beasley JC, Fike JA, Rhodes OE (2014) Effects of landscape, demographic and behavioral factors on kin structure: testing ecological predictions in a mesopredator with high dispersal capability. Anim Conserv 17:225–234

    Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    CAS 
    PubMed 

    Google Scholar 

  • Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20

    Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Google Scholar 

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, et al. (2020) adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. https://CRAN.R-project.org/package=adespatial

  • Evans JS (2020) spatialEco. R package version 1.3-1, https://github.com/jeffreyevans/spatialEco

  • Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25:104–120

    CAS 
    PubMed 

    Google Scholar 

  • François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784

    PubMed 

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Google Scholar 

  • Galpern P, Peres-Neto PR, Polfus J, Manseau M (2014) MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol Evolution 5:1116–1120

    Google Scholar 

  • Galpern P, Manseau M, Hettinga P, Smith K, Wilson P (2012) Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 12:771–778

    PubMed 

    Google Scholar 

  • Guerrero J, Byrne AW, Lavery J, Presho E, Kelly G, Courcier EA et al. (2018) The population and landscape genetics of the European badger (Meles meles) in Ireland. Ecol Evol 8:10233–10246

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756

    PubMed 

    Google Scholar 

  • Hearn AJ, Cushman SA, Goossens B, Ross J, Macdonald EA, Hunter LTB et al. (2019) Predicting connectivity, population size and genetic diversity of Sunda clouded leopards across Sabah, Borneo. Landsc Ecol 34:275–290

    Google Scholar 

  • Hein C, Moniem HEA, Wagner HH (2021) Can we compare effect size of spatial genetic structure between studies and species using moran eigenvector maps? Frontiers. Ecol Evol 9:612718

    Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Google Scholar 

  • Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968

    Google Scholar 

  • Janecka J, Jackson R, Yuquang Z et al. (2008) Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv 11:401–411

    Google Scholar 

  • Janecka JE, Janecka JE, Yu-Guang Z, Di-Qiang L, Munkhtsog B, Bayaraa M et al. (2017) Range-wide snow leopard phylogeography supports three subspecies. J Hered 108:597–607

    PubMed 

    Google Scholar 

  • Johansson Ö, Rauset G, Samelius G, McCarthy T, Andrén H, Tumursukh L et al. (2016) Land sharing is essential for snow leopard conservation. Biol Conserv 203:1–7

    Google Scholar 

  • Johansson Ö, Koehler G, Rauset G, Samelius G, Andrén H, Mishra C et al. (2018) Sex-specific seasonal variation in puma and snow leopard home range utilization. Ecosphere 9(8):e02371. https://doi.org/10.1002/ecs2.2371.

    Article 

    Google Scholar 

  • Johansson Ö, Ausilio G, Low M, Lkhagvajav P, Weckworth B, Sharma K (2021) The timing of breeding and independence for snow leopard females and their cubs. Mamm Biol 101:173–180

    Google Scholar 

  • Jombart T (2008b) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    CAS 
    PubMed 

    Google Scholar 

  • Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341

    CAS 
    PubMed 

    Google Scholar 

  • Jombart T, Devillard S, Dufour A-B, Pontier D (2008a) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:hdy200834

    Google Scholar 

  • Jombart T (2017) An introduction to adegenet 2.1.0. https://github.com/thibautjombart/adegenet/wiki/Tutorials

  • Karmacharya DB, Thapa K, Shrestha R, Dhakal M, Janecka JE (2011) Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Research Notes 4:516

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaszta Ż, Cushman SA, Hearn AJ, Burnham D, Macdonald EA, Goossens B et al. (2019) Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol Conserv 235:63–76

    Google Scholar 

  • Kaszta Ż, Cushman SA, Htun S, Naing H, Burnham D, Macdonald DW (2020) Simulating the impact of Belt and Road initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa. Landsc Ecol 35:727–746

    Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi (Kenya). http://www.worldagroforestry.org/output/tree-diversity-analysis

  • Korablev MP, Poyarkov AD, Karnaukhov AS, Zvychaynaya EYU, Kuksin AN, Malykh SV et al. (1776) Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conserv Genet 22:397–410

    Google Scholar 

  • Kuhn A, Bauman D, Darras H, Aron S (2017) Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system. Heredity 119:207–213

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landguth E, Cushman S, Schwz M, Mckelvey K, Mury M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    CAS 
    PubMed 

    Google Scholar 

  • Landguth EL, Cushman SA (2010) cdpop: A spatially explicit cost distance population genetics program. Mol Ecol Resour 10:156–161

    CAS 
    PubMed 

    Google Scholar 

  • Landguth EL, Fedy BC, Oyler-Mccance SJ, Garey AL, Emel SL, Mumma M et al. (2012) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour 12:276–284

    Google Scholar 

  • Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277

    Google Scholar 

  • Legendre P, Fortin M-J, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247

    Google Scholar 

  • Li J, Weckworth BV, McCarthy TM, Liang X, Liu Y, Xing R et al. (2020) Defining priorities for global snow leopard conservation landscapes. Biol Conserv 241:108387

    Google Scholar 

  • Macdonald EA, Cushman SA, Landguth EL, Hearn AJ, Malhi Y, Macdonald DW (2018) Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. Plos One 13:e0196974

    PubMed 
    PubMed Central 

    Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–35

    PubMed 

    Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landscape Ecol 30:1405–1420

    Google Scholar 

  • McCarthy TM, Fuller TK, Munkhtsog B (2005) Movements and activities of snow leopards in Southwestern Mongolia. Biol Conserv 124:527–537

    Google Scholar 

  • McCarthy T, Mallon D, Jackson R, Zahler P, McCarthy K (2017) Panthera uncia. The IUCN red list of threatened species 2017: e.T22732A50664030. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T22732A50664030.en. Accessed 29 June 2019

  • Miquel C, Bellemain E, Poillot C, Bessiere J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988

    Google Scholar 

  • Neel MC, McKelvey K, Ryman N, Lloyd MW, Bull RS, Allendorf FW et al. (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111:189–199

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2019) vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegancitat

  • Oyler-McCance SJ, Fedy BC, Landguth EL (2013) Sample design effects in landscape genetics. Conserv Genet 14:275–285

    Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    CAS 
    PubMed 

    Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. Plos Genet 2:e190

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572

    Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    PubMed 

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Riordan P, Cushman SA, Mallon D, Shi K, Hughes J (2016) Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography 39:419–426

    Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed 

    Google Scholar 

  • Ruiz-Gonzalez A, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ (2015) Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape. Mol Ecol 24:5110–5129

    PubMed 

    Google Scholar 

  • Savary P, Foltête J, Moal H, Vuidel G, Garnier S (2021) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21:1167–1185

    PubMed 

    Google Scholar 

  • Schwartz MK, McKelvey KS (2008) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441

    Google Scholar 

  • Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934

    CAS 
    PubMed 

    Google Scholar 

  • Shirk AJ, Cushman SA (2014) Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Front Ecol Evolution 2:62

    Google Scholar 

  • Shirk AJ, Landguth EL, Cushman SA (2020) The effect of gene flow from unsampled demes in landscape genetic analysis. Mol Ecol Resour 21:394–403

    PubMed 

    Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    CAS 
    PubMed 

    Google Scholar 

  • Shirk AJ, Landguth EL, Cushman SA (2017a) A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol Ecol Resour 18:55–67

  • Shirk AJ, Landguth EL, Cushman SA (2017b) A comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Resour 17:1308–1317

  • Short-Bull RA, Cushman S, Mace R, Chilton T, Kendall K, Landguth E et al. (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107

    Google Scholar 

  • Shrestha B, Kindlmann P (2020) Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Sci Rep 10:19853

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stekhoven DJ (2013) missForest: nonparametric missing value imputation using random forest. R package version 1.4

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    PubMed 

    Google Scholar 

  • Wagner HH, Fortin M-J (2012) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261

    Google Scholar 

  • Wagner HH, Fortin MJ (2016) Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds. Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UK. pp. 77–98

  • Wahlund S (1928) Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65–106

    Google Scholar 

  • Wan HY, Cushman SA, Ganey JL (2019) Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas. Landsc Ecol 34:503–519

    Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612

    Google Scholar 

  • Weckworth B (2021) Snow leopard (Panthera uncia) genetics: the knowledge gaps, needs, and implications for conservation. J Indian I Sci 101:279–290

    Google Scholar 

  • Wollenberg AL, van den (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu S, Qinye Y, Du Z (2003) Delineation of eco-geographic regional system of China. J Geogr Sci 13:309

    Google Scholar 

  • Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers Distrib 24:868–879

    Google Scholar 

  • Zhang Y, Hacker C, Zhang Y, Xue Y, Wu L, Dai Y et al. (2019) An analysis of genetic structure of snow leopard populations in Sanjiang-Yuan and Qilianshan National Parks. Acta Theriologica Sin 39:442–449

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists project increased risk to water supplies in South Africa this century

    Turn taking is not restricted by task specialisation but does not facilitate equality in offspring provisioning