Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).
Google Scholar
Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 0003 (2017).
Google Scholar
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
Google Scholar
Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).
Google Scholar
Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897 (2018).
Google Scholar
Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).
Google Scholar
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
Google Scholar
Middleton, N. & Sternberg, T. Climate hazards in drylands: a review. Earth Sci. Rev. 126, 48–57 (2013).
Google Scholar
Park, C.-E. et al. Keeping global warming within 1.5 C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).
Google Scholar
Pra˘va˘lie, R., Bandoc, G., Patriche, C. & Sternberg, T. Recent changes in global drylands: evidences from two major aridity databases. Catena 178, 209–231 (2019).
Google Scholar
Huang, J. et al. Declines in global ecological security under climate change. Ecol. Indic. 117, 106651 (2020).
Google Scholar
Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).
Google Scholar
He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).
Google Scholar
Zhang, C., Yang, Y., Yang, D. & Wu, X. Multidimensional assessment of global dryland changes under future warming in climate projections. J. Hydrol. 592, 125618 (2020).
Google Scholar
Pra˘va˘lie, R. Exploring the multiple land degradation pathways across the planet. Earth Sci. Rev. 220, 103689 (2021).
Google Scholar
Balvanera, P. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).
Google Scholar
UNCCD. United Nations Convention to Combat Desertification — Global Land Outlook (UNCCD, 2017).
Pra˘va˘lie, R. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259–278 (2016).
Google Scholar
Yang, X. et al. Quaternary environmental changes in the drylands of China — a critical review. Quat. Sci. Rev. 30, 3219–3233 (2011).
Google Scholar
Chen, X., Hu, R., Jiang, F., Wang, Y. & Zhang, J. Physical Geography in China’s Drylands (Science, 2015).
Ci, L. & Yang, X. Desertification and its Control in China (Springer, 2010).
Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).
Google Scholar
Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
Google Scholar
Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).
Google Scholar
D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2006).
Brauman, K. A., Daily, G. C., Duarte, T. K. E. & Mooney, H. A. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 32, 67–98 (2007).
Google Scholar
Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).
Google Scholar
Stringer, L. C. et al. Climate change impacts on water security in global drylands. One Earth 4, 851–864 (2021).
Google Scholar
Qi, J., Chen, J., Wan, S. & Ai, L. Understanding the coupled natural and human systems in dryland East Asia. Environ. Res. Lett. 7, 015202 (2012).
Google Scholar
Chi, W., Zhao, Y., Kuang, W. & He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 668, 204–215 (2019).
Google Scholar
Shi, P., Yan, P., Yuan, Y. & Nearing, M. A. Wind erosion research in China: past, present and future. Prog. Phys. Geogr. 28, 366–386 (2004).
Google Scholar
Cheng, L. et al. Estimation of the costs of desertification in China: a critical review. Land. Degrad. Dev. 29, 975–983 (2018).
Google Scholar
Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193 (2018).
Google Scholar
Scott, R. L., Jenerette, G. D., Potts, D. L. & Huxman, T. E. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res. Biogeosci. 114, G4 (2009).
Google Scholar
Scott, R. L. et al. When vegetation change alters ecosystem water availability. Glob. Change Biol. 20, 2198–2210 (2014).
Google Scholar
Zhang, L. et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).
Google Scholar
Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).
Google Scholar
Arndt, S. K. et al. Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater. J. Arid. Environ. 59, 259–270 (2004).
Google Scholar
Deng, L., Shangguan, Z.-P., Wu, G.-L. & Chang, X.-F. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95 (2017).
Google Scholar
Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).
Google Scholar
Fu, C., Jiang, Z., Guan, Z., He, J. & Xu, Z. F. Regional Climate Studies of China (Springer Science & Business Media, 2008).
Zhao, J., Zhang, Q., Zhu, X., Shen, Z. & Yu, H. Drought risk assessment in China: evaluation framework and influencing factors. Geogr. Sustain. 1, 220–228 (2020).
Huang, J., Xie, Y., Guan, X., Li, D. & Ji, F. The dynamics of the warming hiatus over the northern hemisphere. Clim. Dyn. 48, 429–446 (2017).
Google Scholar
Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).
Google Scholar
Liu, M., Shen, Y., Qi, Y., Wang, Y. & Geng, X. Changes in precipitation and drought extremes over the past half century in China. Atmosphere 10, 203 (2019).
Google Scholar
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).
Google Scholar
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 1–12 (2018).
Google Scholar
Li, Y., Huang, J., Ji, M. & Ran, J. Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci. 32, 870–876 (2015).
Google Scholar
Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).
Google Scholar
Posner, S. M., McKenzie, E. & Ricketts, T. H. Policy impacts of ecosystem services knowledge. Proc. Natl Acad. Sci. USA 113, 1760–1765 (2016).
Google Scholar
Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).
Google Scholar
Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).
Google Scholar
Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 1826–1831 (2008).
Google Scholar
Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008).
Google Scholar
Wang, X., Zhang, C., Hasi, E. & Dong, Z. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid. Environ. 74, 13–22 (2010).
Google Scholar
Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
Google Scholar
Chen, L., Wei, W., Fu, B. & Lü, Y. Soil and water conservation on the Loess Plateau in China: review and perspective. Prog. Phys. Geogr. 31, 389–403 (2007).
Google Scholar
Lü, Y. et al. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 7, e31782 (2012).
Google Scholar
McVicar, T. R. et al. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China’s re-vegetation program in the Loess Plateau: matching model complexity to data availability. For. Ecol. Manag. 259, 1277–1290 (2010).
Google Scholar
Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).
Google Scholar
Xiao, J. et al. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 9, 13596–13607 (2019).
Google Scholar
Zastrow, M. China’s tree-planting drive could falter in a warming world. Nature 573, 474–476 (2019).
Google Scholar
Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).
Google Scholar
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Google Scholar
Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187 (2016).
Google Scholar
Yue, Y. et al. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).
Google Scholar
Peng, S. et al. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 501, 88–92 (2013).
Google Scholar
Cao, S. et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth Sci. Rev. 104, 240–245 (2011).
Google Scholar
Wang, G., Innes, J. L., Lei, J., Dai, S. & Wu, S. China’s forestry reforms. Science 318, 1556 (2007).
Google Scholar
Li, M. M. et al. An overview of the “Three-North” Shelterbelt project in China. Forestry Stud. China 14, 70–79 (2012).
Google Scholar
Wang, Y., Shao, M. A., Zhu, Y. & Liu, Z. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 151, 437–448 (2011).
Google Scholar
Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).
Google Scholar
Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 24, 499–510 (2013).
Google Scholar
Fu, B. et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 8, 284–293 (2011).
Google Scholar
Huang, L. & Shao, M. Advances and perspectives on soil water research in China’s Loess Plateau. Earth Sci. Rev. 199, 102962 (2019).
Google Scholar
Wang, L. & D’Odorico, P. Water limitations to large-scale desert agroforestry projects for carbon sequestration. Proc. Natl Acad. Sci. USA 116, 24925–24926 (2019).
Google Scholar
Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184 (2004).
Google Scholar
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).
Google Scholar
Zhenghu, D., Honglang, X., Xinrong, L., Zhibao, D. & Gang, W. Evolution of soil properties on stabilized sands in the Tengger Desert, China. Geomorphology 59, 237–246 (2004).
Google Scholar
Wang, Y., Shao, M. A. & Shao, H. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381, 9–17 (2010).
Google Scholar
Huang, J., Wang, T., Wang, W., Li, Z. & Yan, H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos. 119, 11–398 (2014).
Google Scholar
Cheng, S., Guan, X., Huang, J., Ji, F. & Guo, R. Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res. Atmos. 120, 8658–8670 (2015).
Google Scholar
Wang, S., Fu, B., Chen, H. & Liu, Y. Regional development boundary of China’s Loess Plateau: water limit and land shortage. Land Use Policy 74, 130–136 (2018).
Google Scholar
Zhang, S. et al. Excessive afforestation and soil drying on China’s Loess Plateau. J. Geophys. Res. Biogeosci. 123, 923–935 (2018).
Google Scholar
Jia, X., Shao, M., Yu, D., Zhang, Y. & Binley, A. Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agric. Ecosyst. Environ. 273, 25–35 (2019).
Google Scholar
Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).
Google Scholar
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Envir. 1, 14–27 (2020).
Google Scholar
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Google Scholar
D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).
Google Scholar
Xue, Y. in Dryland Ecohydrology 139–169 (Springer, 2019).
Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).
Google Scholar
Li, S. G. et al. Micrometeorological changes following establishment of artificially established artemisia vegetation on desertified sandy land in the Horqin sandy land, China and their implication on regional environmental change. J. Arid. Environ. 52, 101–119 (2002).
Google Scholar
Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).
Google Scholar
Xue, Y. The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Clim. 9, 2173–2189 (1996).
Google Scholar
Chen, L., Ma, Z. & Zhao, T. Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China. Clim. Change 144, 461–473 (2017).
Google Scholar
Peng, D. et al. The influences of drought and land-cover conversion on inter-annual variation of NPP in the Three-North Shelterbelt Program zone of China based on MODIS data. PLoS ONE 11, e0158173 (2016).
Google Scholar
Wang, F., Pan, X., Wang, D., Shen, C. & Lu, Q. Combating desertification in China: past, present and future. Land Use Policy 31, 311–313 (2013).
Google Scholar
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Google Scholar
Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).
Google Scholar
Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).
Google Scholar
Deng, L., Liu, G. & Shangguan, Z. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Glob. Change Biol. 20, 3544–3556 (2014).
Google Scholar
Zhao, Y., Wu, J., He, C. & Ding, G. Linking wind erosion to ecosystem services in drylands: a landscape ecological approach. Landsc. Ecol. 32, 2399–2417 (2017).
Google Scholar
Gao, Y., Dang, P., Zhao, Q., Liu, J. & Liu, J. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, northwest China. Land Degrad. Dev. 29, 1031–1040 (2018).
Google Scholar
Xu, J., Chen, J., Liu, Y. & Fan, F. Identification of the geographical factors influencing the relationships between ecosystem services in the Belt and Road region from 2010 to 2030. J. Clean. Prod. 275, 124153 (2020).
Google Scholar
Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).
Google Scholar
Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).
Google Scholar
Xu, J. China’s new forests aren’t as green as they seem. Nature 477, 371–371 (2011).
Google Scholar
Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 1–11 (2016).
Kong, Z.-H., Stringer, L. C., Paavola, J. & Lu, Q. Situating China in the global effort to combat desertification. Land 10, 702 (2021).
Google Scholar
Cao, S. et al. Greening China naturally. Ambio 40, 828–831 (2011).
Google Scholar
Chen, H., Shao, M. & Li, Y. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).
Google Scholar
Chu, X., Zhan, J., Li, Z., Zhang, F. & Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 215, 382–389 (2019).
Google Scholar
Yang, H., Huang, Q., Zhang, J., Songer, M. & Liu, J. Range-wide assessment of the impact of China’s nature reserves on giant panda habitat quality. Sci. Total. Environ. 769, 145081 (2021).
Google Scholar
Feng, C. et al. Which management measures lead to better performance of China’s protected areas in reducing forest loss? Sci. Total Environ. 764, 142895 (2021).
Google Scholar
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Luedeling, E. et al. Forest restoration: overlooked constraints. Science 366, 315–315 (2019).
Google Scholar
Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).
Google Scholar
Morton, S. et al. A fresh framework for the ecology of arid Australia. J. Arid. Environ. 75, 313–329 (2011).
Google Scholar
Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).
Google Scholar
Kotiaho, J. S. & Halme, P. The IPBES Assessment Report on Land Degradation and Restoration (Univ. of Jyväskylä, 2018).
Bhattachan, A., D’Odorico, P., Dintwe, K., Okin, G. S. & Collins, S. L. Resilience and recovery potential of duneland vegetation in the southern Kalahari. Ecosphere 5, 1–14 (2014).
Google Scholar
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).
Google Scholar
Yu, G. et al. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J. Geogr. Sci. 26, 803–826 (2016).
Google Scholar
Fu, B. et al. Chinese ecosystem research network: progress and perspectives. Ecol. Complex. 7, 225–233 (2010).
Google Scholar
Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5, 4799 (2014).
Google Scholar
Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).
Google Scholar
Assessment, M. E. Ecosystems and Human Well-Being Vol. 5 (Island, 2005).
Zhu, Q., Castellano, M. J. & Yang, G. Coupling soil water processes and the nitrogen cycle across spatial scales: potentials, bottlenecks and solutions. Earth Sci. Rev. 187, 248–258 (2018).
Google Scholar
Fu, B. Promoting geography for sustainability. Geogr. Sustain. 1, 1–7 (2020).
Fu, B. et al. The research priorities of resources and environmental sciences. Geogr. Sustain. 2, 87–94 (2021).
Li, C., Zhang, C., Luo, G. & Chen, X. Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007 — the spatiotemporal patterns and climate controls. Ecol. Model. 267, 148–157 (2013).
Google Scholar
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
Google Scholar
Zhang, Y., Zhao, R., Liu, Y., Huang, K. & Zhu, J. Sustainable wildlife protection on the Qingzang Plateau. Geogr. Sustain. 2, 40–47 (2021).
Wang, X., Chen, F. & Dong, Z. The relative role of climatic and human factors in desertification in semiarid China. Glob. Environ. Change 16, 48–57 (2006).
Google Scholar
An, S. et al. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 75, 248–256 (2008).
Google Scholar
Huang, J. et al. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 31, 1380–1391 (2020).
Google Scholar
Sun, D. et al. The effects of land use change on soil infiltration capacity in China: a meta-analysis. Sci. Total Environ. 626, 1394–1401 (2018).
Google Scholar
Ren, C. et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. For. Ecol. Manag. 376, 59–66 (2016).
Google Scholar
Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).
Google Scholar
Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).
Google Scholar
Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
Google Scholar
Source: Ecology - nature.com