in

Microbial diversity in extreme environments

  • 1.

    Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Schmid, A. K., Allers, T. & DiRuggiero, J. Snapshot: microbial extremophiles. Cell 180, 818–818.e1 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Denef, V. J., Mueller, R. S. & Banfield, J. F. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 4, 599–610 (2010).

    PubMed 

    Google Scholar 

  • 4.

    Inskeep, W. P. et al. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol. 4, 67 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Oren, A. Halophilic microbial communities and their environments. Curr. Opin. Microbiol. 33, 119–124 (2015).

    CAS 

    Google Scholar 

  • 6.

    Reysenbach, A. L., Wickham, G. S. & Pace, N. R. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol. 60, 2113–2119 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Bond, P. L., Smriga, S. P. & Banfield, J. F. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66, 3842–3849 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Huber, J. A. et al. Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Kuang, J. L. et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Power, J. F. et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat. Commun. 9, 2876 (2018). Extensive sampling and high-throughput 16S rRNA gene sequencing have provided deeper insights into the patterns and ecological drivers of microbial communities inhabiting geothermal springs.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Podell, S. et al. Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J. 8, 979–990 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).

    PubMed 

    Google Scholar 

  • 13.

    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015). The cultivation-independent reconstruction of the first complete genomes for members of the DPANN archaea allowed confident prediction of incomplete or absent pathways for these enigmatic organisms.

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Sharp, C. E. et al. Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J. 8, 1166–1174 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Hedlund, B. P. et al. Uncultivated thermophiles: current status and spotlight on ‘Aigarchaeota’. Curr. Opin. Microbiol. 25, 136–145 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Hua, Z. S. et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J. 9, 1280–1294 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004). This is the first shotgun metagenomic sequencing study that enabled reconstruction of near-complete microbial genomes directly (without cultivation) from a natural community.

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Chen, L. X. et al. Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. ISME J. 12, 756–775 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc. Natl Acad. Sci. USA 107, 8806–8811 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Brock, T. D. Life at high temperatures. Science 158, 1012–1019 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Cole, J. K. et al. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 7, 718–729 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Colman, D. R. et al. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol. Ecol. 92, fiw137 (2016).

    PubMed 

    Google Scholar 

  • 27.

    Ward, D. M. et al. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Miller, S. R. et al. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl. Environ. Microbiol. 75, 4565–4572 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Ward, L. et al. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring. ISME J. 11, 1158–1167 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91, 1609–1613 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Takai, K. & Yoshihiko, S. A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol. Ecol. 28, 177–188 (1999).

    CAS 

    Google Scholar 

  • 32.

    Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Nunoura, T. et al. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ. Microbiol. 7, 1967–1984 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community. ISME J. 10, 210–224 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Hua, Z. S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Takami, H. et al. A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem. PLoS ONE 7, e30559 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Colman, D. R. et al. Novel, deep-branching heterotrophic bacterial populations recovered from thermal spring metagenomes. Front. Microbiol. 7, 304 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Nobu, M. et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J. 10, 273–286 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Orcutt, B. N., Sylvan, J. B., Knab, N. J. & Edwards, K. J. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75, 361–422 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016). This is a good example of how analysis of the increasing wealth of metagenomic data collected from diverse environments may lead to the discovery of novel major lineages.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at Mid-Ocean Ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002).

    CAS 

    Google Scholar 

  • 45.

    Perner, M. et al. In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environ. Microbiol. 15, 1551–1560 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Flores, G. E. et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ. Microbiol. 13, 2158–2171 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Dick, G. J. et al. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271–283 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Campbell, B. J., Summers Engel, A., Porter, M. L. & Takai, K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4, 458–468 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Reysenbach, A. L., Longnecker, K. & Kirshtein, J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 3798–3806 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Takai, K., Komatsu, T., Inagaki, F. & Horikoshi, K. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67, 3618–3629 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane- and sulfur-metabolizing microbial communities dominate the Lost City Hydrothermal Field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Reveillaud, J. et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ. Microbiol. 18, 1970–1987 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Brazelton, W. J. et al. Archaea and bacteria with surprising micro-diversity show shifts in dominance over 1000-year time scales in hydrothermal chimneys. Proc. Natl Acad. Sci. USA 107, 1612–1617 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Casanueva, A. et al. Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12, 651–656 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Wurch, L. et al. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat. Commun. 7, 12115 (2016). This is an interesting study demonstrating that insights from genomic studies may help develop effective cultivation strategies for the isolation of novel microbial species.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015). The discovery and genomic characterization of Lokiarchaeota have unveiled insights into eukaryogenesis.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525 (2020). This study reports the isolation of the first member of the superphylum Asgard, confirming the existence of these archaea and their close phylogenetic relatedness to eukaryotes.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Margesin, R. & Collins, T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl. Microbiol. Biotechnol. 103, 2537–2549 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Hoham, R. W. & Duval, B. in Snow Ecology (eds Jones, H. et al.) 168–228 (Cambridge Univ. Press, 2001).

  • 66.

    Edwards, A. et al. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol. Ecol. 89, 222–237 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4, 191–202 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Franzetti, A. et al. Temporal variability of bacterial communities in cryoconite on an alpine glacier. Environ. Microbiol. Rep. 9, 71–78 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. & Sattler, B. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Chang. Biol. 15, 955–960 (2009).

    Google Scholar 

  • 70.

    Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92, fiw018 (2016).

    PubMed 

    Google Scholar 

  • 74.

    Fernández, A. B. et al. Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol. Ecol. 88, 623–635 (2014).

    PubMed 

    Google Scholar 

  • 75.

    Ventosa, A. et al. Microbial diversity of hypersaline environments: a metagenomic approach. Curr. Opin. Microbiol. 25, 80–87 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Emerson, J. B. et al. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea 2013, 370871 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Ley, R. E. et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013). This study retrieves an unprecedented number of nearly full length 16S rRNA gene sequences from the microbial mats of the Guerrero Negro hypersaline environment, Mexico, demonstrating them to be among the most diverse, complex and novel microbial ecosystems known.

    PubMed 

    Google Scholar 

  • 79.

    Vavourakis, C. D. et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front. Microbiol. 7, 211 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA. 116, 14661–14670 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Nigro, L. M., Hyde, A. S., MacGregor, B. J. & Teske, A. Phylogeography, salinity adaptations and metabolic potential of the candidate division KB1 bacteria based on a partial single cell genome. Front. Microbiol. 7, 1266 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Vavourakis, C. D. et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 6, 168 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Edwards, K. J., Becker, K. & Colwell, F. The deep, dark energy biosphere: intraterrestrial life on Earth. Annu. Rev. Earth Planet. Sci. 40, 551–568 (2012).

    CAS 

    Google Scholar 

  • 84.

    Parkes, R. J. et al. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar. Geol. 352, 409–425 (2014).

    CAS 

    Google Scholar 

  • 85.

    Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Natl Acad. Sci. USA 114, 2940–2945 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Ciobanu, M. C. et al. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J. 8, 1370–1380 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Inagaki, F. et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349, 420–424 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    D’Hondt, S., Pockalny, R., Fulfer, V. M. & Spivack, A. J. Subseafloor life and its biogeochemical impacts. Nat. Commun. 10, 3519 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).

    Google Scholar 

  • 90.

    Teske, A. & Sørensen, K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol. 16, 671–683 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 92.

    Sørensen, K. B. & Teske, A. Stratified communities of active Archaea in deep marine subsurface sediments. Appl. Environ. Microbiol. 72, 4596–4603 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Petro, C. et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front. Microbiol. 10, 758 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Jorgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl Acad. Sci. USA 109, E2846–E2855 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Edwards, K. J., Wheat, C. G. & Sylvan, J. B. Under the sea: microbial life in volcanic oceanic crust. Nat. Rev. Microbiol. 9, 703–712 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Li, J. et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579, 250–255 (2020). This is a multiple-approach exploration to provide the first insights into the ultralow-biomass microbial assemblages inhabiting the lithified lower oceanic crust.

    CAS 
    PubMed 

    Google Scholar 

  • 98.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Nyyssönen, M. et al. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J. 8, 126–138 (2014).

    PubMed 

    Google Scholar 

  • 100.

    Lin, X., Kennedy, D., Fredrickson, J., Bjornstad, B. & Konopka, A. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ. Microbiol. 14, 414–425 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 101.

    Osburn, M. R. et al. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front. Microbiol. 5, 610 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    CAS 

    Google Scholar 

  • 103.

    Navarro-Noya, Y. E. et al. Pyrosequencing analysis of the bacterial community in drinking water wells. Microb. Ecol. 66, 19–29 (2013).

    PubMed 

    Google Scholar 

  • 104.

    Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 105.

    Bagnoud, A. et al. Reconstructing a hydrogen driven microbial metabolic network in Opalinus Clay rock. Nat. Commun. 7, 12770 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Magnabosco, C. et al. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J. 10, 730–741 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 107.

    Hernsdorf, A. W. et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Kantor, R. S. et al. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. mBio 4, e00708–e00713 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Wrighton, K. C. et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 8, 1452–1463 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Hallberg, K. B., Coupland, K., Kimura, S. & Johnson, D. B. Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 72, 2022–2030 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 112.

    Belnap, C. P. et al. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions. ISME J. 5, 1152–1161 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 113.

    Edwards, K. J. et al. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 65, 3627–3632 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Liu, J. et al. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl. Environ. Microbiol. 80, 3677–3686 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Golyshina, O. V. et al. ‘ARMAN’ archaea depend on association with euryarchaeal host in culture and in situ. Nat. Commun. 8, 60 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 116.

    Antony, C. P. et al. Microbiology of Lonar Lake and other soda lakes. ISME J. 7, 468–476 (2013).

    PubMed 

    Google Scholar 

  • 117.

    Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18, 791–809 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 119.

    Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA. 112, 15684–15689 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 121.

    Reinthaler, T. et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51, 1262–1273 (2006).

    CAS 

    Google Scholar 

  • 122.

    Hewson, I., Steele, J. A., Capone, D. G. & Fuhrman, J. A. Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol. Oceanogr. 51, 1274–1283 (2006).

    Google Scholar 

  • 123.

    DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 124.

    Pham, V. D., Konstantinidis, K. T., Palden, T. & DeLong, E. F. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ. Microbiol. 10, 2313–2330 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 125.

    Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 126.

    Ziegler, S. et al. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. ISME J. 7, 1725–1737 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Méndez-García, C. et al. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME J. 8, 1259–1274 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Klatt, C. G. et al. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J. 7, 1775–1789 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 129.

    Klatt, C. G. et al. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. Front. Microbiol. 4, 106 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 130.

    Inskeep, W. P. et al. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS ONE 5, e9773 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Swingley, W. D. et al. Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. PLoS ONE 7, e38108 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 132.

    Liu, Z. et al. Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. ISME J. 5, 1279–1290 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 134.

    Ghai, R. et al. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1, 135 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 135.

    Uritskiy, G. et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME J. 13, 2737–2749 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 136.

    Uritskiy, G. et al. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ. Microbiol. 23, 3401–3417 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 137.

    Herrmann, M. et al. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl. Environ. Microbiol. 81, 2384–2394 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 138.

    Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 139.

    Mueller, R. S. et al. Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 6, 374 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 140.

    Chen, L. X. et al. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ. Microbiol. 15, 2431–2444 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 141.

    Mueller, R. S. et al. Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ. Microbiol. 13, 2279–2292 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 142.

    Mosier, A. C. et al. Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. 9, 180–194 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 143.

    Papke, R. T., Koenig, J. E., Rodriguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 144.

    Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol. Biol. Evol. 22, 2354–2361 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 145.

    Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 146.

    Reno, M. L., Held, N. L., Fields, C. J., Burke, P. V. & Whitaker, R. J. Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl Acad. Sci. USA 106, 8605–8610 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 147.

    Mongodin, E. F. et al. The genome of Salinibacter Ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012). Comparative genomics provides evidence that massive amounts of gene influx from bacterial sources may have led to the drastic change in lifestyle in the extremely salt tolerant Haloarchaea.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 149.

    Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 150.

    Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 151.

    Simmons, S. L. et al. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol. 6, e177 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Lo, I. et al. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446, 537–541 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 153.

    Denef, V. J. et al. Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ. Microbiol. 11, 313–325 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 154.

    Denef, V. J. et al. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl Acad. Sci. USA 107, 2383–2390 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 155.

    Denef, V. J. & Banfield, J. F. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science 336, 462–466 (2012). This study provides a time-series population metagenomic analysis of microorganisms in exceptionally low diversity AMD biofilms, allowing for the first time measurement of evolutionary rates for wild populations.

    CAS 
    PubMed 

    Google Scholar 

  • 156.

    Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 157.

    Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. Biol. Sci. 278, 1009–1018 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 158.

    Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 159.

    Baker, B. J. et al. Diversity, ecology and evolution of archaea. Nat. Microbiol. 5, 887–900 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 160.

    Paul, B. G. et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun. 6, 6585 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 161.

    Paul, B. G. et al. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2, 17045 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 162.

    Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 163.

    Anderson, R. E. et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat. Commun. 8, 1114 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 164.

    Brazelton, W. J. & Baross, J. A. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 3, 1420–1424 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 165.

    Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 166.

    Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 167.

    Clark, D. R. et al. Biogeography at the limits of life: do extremophilic microbial communities show biogeographical regionalization? Glob. Ecol. Biogeogr. 26, 1435–1446 (2017).

    Google Scholar 

  • 168.

    Atanasova, N. S., Roine, E., Oren, A., Bamford, D. H. & Oksanen, H. M. Global network of specific virus-host interactions in hypersaline environments. Environ. Microbiol. 14, 426–440 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 169.

    Wilkins, D. et al. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol. Rev. 37, 303–335 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 170.

    Cavicchioli, R. Microbial ecology of Antarctic aquatic systems. Nat. Rev. Microbiol. 13, 691–706 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 171.

    López-Bueno, A. et al. High diversity of the viral community from an Antarctic lake. Science 326, 858–861 (2009).

    PubMed 

    Google Scholar 

  • 172.

    Aguirre de Cárcer, D., López-Bueno, A., Pearce, D. A. & Alcamí, A. Biodiversity and distribution of polar freshwater DNA viruses. Sci. Adv. 1, e1400127 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 173.

    Yau, S. et al. Virophage control of Antarctic algal host–virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011). This is the first study to reveal the important ecological roles of virophages and their regulation of host–virus interactions.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 174.

    Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020). Analysis of massive metagenomic datasets revealed clades of huge phages from diverse habitats, including extreme environments.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 175.

    Tschitschko, B. et al. Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME J. 9, 2094–2107 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 176.

    Mosier, A. C. et al. Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage. Front. Microbiol. 7, 238 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 177.

    Quemener, M. et al. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ. Microbiol. 22, 3950–3967 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 178.

    Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 179.

    Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 180.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    PubMed 

    Google Scholar 

  • 181.

    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 182.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 183.

    López-Pérez, M., Haro-Moreno, J. M., Coutinho, F. H., Martinez-Garcia, M. & Rodriguez-Valera, F. The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems 5, e00605-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 184.

    Altshuler, I., Goordial, J. & Whyte, L. G. in Psychrophiles: From Biodiversity to Biotechnology (ed. Margesin, R.) 153–180 (Springer International Publishing, 2017).

  • 185.

    Huang, L. N., Kuang, J. L. & Shu, W. S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol. 24, 581–593 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 186.

    Klatt, C. G. et al. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J. 5, 1262–1278 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 187.

    Menzel, P. et al. Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb. Ecol. 70, 411–424 (2015).

    PubMed 

    Google Scholar 

  • 188.

    Stokke, R. et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ. Microbiol. 17, 4063–4077 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 189.

    Zeng, Y. et al. Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a High Arctic glacier. mBio 11, e02641–20 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 190.

    Simon, C., Wiezer, A., Strittmatter, A. W. & Daniel, R. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl. Environ. Microbiol. 75, 7519–7526 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 191.

    Lipson, D. A. et al. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS ONE 8, e64659 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 192.

    Podell, S. et al. Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS ONE 8, e61692 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 193.

    DeMaere, M. Z. et al. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc. Natl Acad. Sci. USA. 110, 16939–16944 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 194.

    Smith, A. R. et al. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME J. 13, 1737–1749 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 195.

    Zhao, R. et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc. Natl Acad. Sci. USA. 117, 32617–32626 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 196.

    Luo, Z. H. et al. Diversity and genomic characterization of a novel Parvarchaeota family in acid mine drainage sediments. Front. Microbiol. 11, 612257 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 197.

    Lewin, A., Wentzel, A. & Valla, S. Metagenomics of microbial life in extreme temperature environments. Curr. Opin. Biotechnol. 24, 516–525 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 198.

    Schlesinger, M. J. Heat-shock proteins. J. Biol. Chem. 265, 12111–12114 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 199.

    D’Amico, S., Collins, T., Marx, J.-C., Feller, G. & Gerday, C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385–389 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 200.

    Bakermans, C., Bergholz, P. W., Ayala-del-Río, H. & Tiedje, J. in Permafrost Soils (ed. Margesin, R.) 159–168 (Springer, 2009).

  • 201.

    Gunde-Cimerman, N., Plemenitaš, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 202.

    Baker-Austin, C. & Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165–171 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 203.

    Dopson, M., Baker-Austin, C., Koppineedi, P. R. & Bond, P. L. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149, 1959–1970 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 204.

    Dopson, M., Ossandon, F. J., Lövgren, L. & Holmes, D. S. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms. Front. Microbiol. 5, 157 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 205.

    Allen, E. E. & Banfield, J. F. Community genomics in microbial ecology and evolution. Nat. Rev. Microbiol. 3, 489–498 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 206.

    Sakowski, E. et al. Current state of and future opportunities for prediction in microbiome research: report from the Mid-Atlantic Microbiome Meet-up in Baltimore on 9 January 2019. mSystems 4, e00392–19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 207.

    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Options for the Diablo Canyon nuclear plant

    J-WAFS launches Food and Climate Systems Transformation Alliance