in

Effects of competitive pressure and habitat heterogeneity on niche partitioning between Arctic and boreal congeners

  • 1.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Google Scholar 

  • 2.

    Wethey, D. S. Biogeography, competition, and microclimate: The barnacle Chthamalus fragilis in New England. Integr. Comp. Biol. 42, 872–880 (2002).

    PubMed 

    Google Scholar 

  • 3.

    Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G. & Körber, J.-H. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Glob. Ecol. Biogeogr. 16, 754–763 (2007).

    Google Scholar 

  • 4.

    Bøhn, T. & Amundsen, P.-A. The competitive edge of an invading specialist. Ecology 82, 2150–2163 (2001).

    Google Scholar 

  • 5.

    Barger, C. P. & Kitaysky, A. S. Isotopic segregation between sympatric seabird species increases with nutritional stress. Biol. Lett. 8, 442–445 (2012).

    PubMed 

    Google Scholar 

  • 6.

    Gosselink, T. E., Deelen, T. R. V., Warner, R. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wildl. Manag. 67, 90 (2003).

    Google Scholar 

  • 7.

    Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so why?. Ecol. Res. 25, 875–881 (2010).

    Google Scholar 

  • 8.

    Pickett, E. P. et al. Spatial niche partitioning may promote coexistence of Pygoscelis penguins as climate-induced sympatry occurs. Ecol. Evol. 8, 9764–9778 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e62897 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 10.

    Reif, J., Reifová, R., Skoracka, A. & Kuczyński, L. Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J. Anim. Ecol. 87, 774–789 (2018).

    PubMed 

    Google Scholar 

  • 11.

    Trego, C. T., Merriam, E. R. & Petty, J. T. Non-native trout limit native brook trout access to space and thermal refugia in a restored large-river system. Restor. Ecol. 27, 892–900 (2019).

    Google Scholar 

  • 12.

    Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).

    Google Scholar 

  • 13.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 14.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • 15.

    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 17.

    Elmhagen, B. et al. Homage to Hersteinsson and Macdonald: Climate warming and resource subsidies cause red fox range expansion and Arctic fox decline. Polar Res. 36, 3 (2017).

    Google Scholar 

  • 18.

    IPCC. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).

  • 19.

    Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 20.

    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).

    ADS 

    Google Scholar 

  • 21.

    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago: Svalbard Norway. Glob. Change Biol. 23, 490–502 (2017).

    ADS 

    Google Scholar 

  • 22.

    Descamps, S., Strøm, H. & Steen, H. Decline of an arctic top predator: Synchrony in colony size fluctuations, risk of extinction and the subpolar gyre. Oecologia 173, 1271–1282 (2013).

    PubMed 
    ADS 

    Google Scholar 

  • 23.

    Garðarsson, A., Guðmundsson, G. A. & Lilliendahl, K. Svartfugl í íslenskum fuglabjörgum 2006–2008. Bliki 33, 35–46 (2019).

    Google Scholar 

  • 24.

    Merkel, F. et al. Declining trends in the majority of Greenland’s thick-billed murre (Uria lomvia) colonies 1981–2011. Polar Biol. 37, 1061–1071 (2014).

    Google Scholar 

  • 25.

    Fauchald, P. et al. The status and trends of seabirds breeding in Norway and Svalbard. 84 (2015).

  • 26.

    Williams, A. J. Site preferences and interspecific competition among guillemots Uria aalge (L.) and Uria lomvia (L.) on Bear Island. Ornis Scand. 5, 113 (1974).

    Google Scholar 

  • 27.

    Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83(1), 301–309. https://doi.org/10.1016/j.anbehav.2011.10.031 (2012).

  • 28.

    Luque, S. P. An Introduction to the diveMove Package. 56 (2007).

  • 29.

    Luque, S. P. & Fried, R. Recursive filtering for zero offset correction of diving depth time series with GNU R Package diveMove. PLoS ONE 6, e15850 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 30.

    QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation Project. http://qgis.osgeo.org, 2018).

  • 31.

    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the Utilization Distribution. J. Wildl. Manag. 69, 1346–1359 (2005).

    Google Scholar 

  • 32.

    Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Google Scholar 

  • 33.

    Geange, S. W., Pledger, S., Burns, K. C. & Shima, J. S. A unified analysis of niche overlap incorporating data of different types. Methods Ecol. Evol. 2, 175–184 (2011).

    Google Scholar 

  • 34.

    Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 35.

    Linnebjerg, J. F. et al. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS ONE 8, e72987 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 36.

    McFarlane Tranquilla, L. A. et al. Multiple-colony winter habitat use by murres Uria spp. in the Northwest Atlantic Ocean: Implications for marine risk assessment. Mar. Ecol. Prog. Ser. 472, 287–303 (2013).

    ADS 

    Google Scholar 

  • 37.

    Pratte, I., Robertson, G. & Mallory, M. Four sympatrically nesting auks show clear resource segregation in their foraging environment. Mar. Ecol. Prog. Ser. 572, 243–254 (2017).

    ADS 

    Google Scholar 

  • 38.

    Kokubun, N. et al. Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea. Biogeosciences 13, 2579–2591 (2016).

    ADS 

    Google Scholar 

  • 39.

    Barger, C. P., Young, R. C., Will, A., Ito, M. & Kitaysky, A. S. Resource partitioning between sympatric seabird species increases during chick-rearing. Ecosphere 7, e01447 (2016).

    Google Scholar 

  • 40.

    Huffeldt, N. P. & Merkel, F. R. Sex-specific, inverted rhythms of breeding-site attendance in an Arctic seabird. Biol. Lett. 12, 20160289 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Kappes, M. A. et al. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species. Mov. Ecol. 3, 34 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Benvenuti, S., Bonadonna, F., Dall’Antonia, L. & Gudmundsson, G. A. Foraging flights of breeding thick-billed murres (Uria lomvia) as revealed by bird-borne direction recorders. Auk 115, 57–66 (1998).

    Google Scholar 

  • 43.

    Hunt, G. L., Bakken, V. & Mehlum, F. Marine birds in the Marginal Ice Zone of the Barents Sea in late winter and spring. Arctic 49, 53–61 (1996).

    Google Scholar 

  • 44.

    Hein, C., Öhlund, G. & Englund, G. Future distribution of Arctic Char Salvelinus alpinus in Sweden under climate change: Effects of temperature, lake size and species interactions. Ambio 41(Suppl 3), 303–312 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Mehlum, F., Watanuki, Y. & Takahashi, A. Diving behaviour and foraging habitats of Brünnich’s guillemots (Uria lomvia) breeding in the High-Arctic. J. Zool. 255, 413–423 (2001).

    Google Scholar 

  • 46.

    Frederiksen, M. et al. Seabird baseline studies in Baffin Bay, 2008–2013. Colony-based fieldwork at Kippaku and Apparsuit, NW Greenland. Report No. 110. (Aarhus University, DCE – Danish Centre for Environment and Energy, Roskilde, Denmark., 2014).

  • 47.

    Spagnolo, M. & Clark, C. D. A geomorphological overview of glacial landforms on the Icelandic continental shelf. J. Maps 5, 37–52 (2009).

    Google Scholar 

  • 48.

    Meier, W. N. et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).

    ADS 

    Google Scholar 

  • 49.

    Gaston, A. J., Smith, P. A. & Provencher, J. F. Discontinuous change in ice cover in Hudson Bay in the 1990s and some consequences for marine birds and their prey. ICES J. Mar. Sci. 69, 1218–1225 (2012).

    Google Scholar 

  • 50.

    Grémillet, D. et al. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Change Biol. 21, 1116–1123 (2015).

    ADS 

    Google Scholar 

  • 51.

    Valdimarsson, H., Astthorsson, O. S. & Palsson, J. Hydrographic variability in Icelandic waters during recent decades and related changes in distribution of some fish species. ICES J. Mar. Sci. 69, 816–825 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Radio-frequency wave scattering improves fusion simulations

    Horizontal gene transfer and adaptive evolution in bacteria