in

Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds

  • 1.

    Thieltges, D. W., Mouritsen, K. N. & Poulin, R. in Mudflat Ecology (ed Beninger, P.) (Springer International Publishing, 2018).

  • 2.

    Tyler-Walters, H. Cerastoderma edule Common cockle. Marine Life Information Network: Biology and Sensitivity Key Information Reviews (2007).

  • 3.

    Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 92, 1563–1577 (2012).

  • 4.

    Magalhaes, L., Freitas, R., Dairain, A. & De Montaudouin, X. Can host density attenuate parasitism?. J. Mar. Biol. Assoc. U. K. 97, 497–505 (2017).

    Google Scholar 

  • 5.

    Carss, D. N. et al. Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 158, 104931 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Lassalle, G., de Montaudouin, X., Soudant, P. & Paillard, C. Parasite co-infection of two sympatric bivalves, the Manila clam (Ruditapes philippinarum) and the cockle (Cerastoderma edule) along a latitudinal gradient. Aquat. Living Resour. 20, 33–42 (2007).

    Google Scholar 

  • 7.

    Hoberg, E. P. Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography in marine systems. Bull. Scand. Soc. Parasitol. 6, 65–89 (1996).

    Google Scholar 

  • 8.

    Muzaffar, S. B. & Jones, I. L. Parasites and diseases of auks (Alcidae) of the world and their ecology-A review. Mar. Ornithol. 32, 121–146 (2004).

    Google Scholar 

  • 9.

    Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. U. S. A. 103, 11211–11216 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Johnson, P. T. J. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).

    PubMed 

    Google Scholar 

  • 12.

    Zannella, C. et al. Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense. Mar. Drugs 15, 182 (2017).

    PubMed Central 

    Google Scholar 

  • 13.

    Fermer, J., Culloty, S. C., Kelly, T. C. & O’riordan, R. M. Parasitological survey of the edible cockle Cerastoderma edule (Bivalvia) on the south coast of Ireland. J. Mar. Biol. Assoc. U. K. 91, 923–928 (2011).

    Google Scholar 

  • 14.

    Longshaw, M. & Malham, S. K. A review of the infectious agents, parasites, pathogens and commensals of European cockles (Cerastoderma edule and C. glaucum) (vol 93, pg 227, 2013). J. Mar. Biol. Assoc. U. K. 93, 1141 (2013).

  • 15.

    Newman, S. H. et al. Aquatic bird disease and mortality as an indicator of changing ecosystem health. Mar. Ecol. Prog. Ser. 352, 299–309 (2007).

    ADS 

    Google Scholar 

  • 16.

    Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. U. S. A. 113, E5062–E5071 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, e00333-e418 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Romalde, J. L., Dieguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Allam, B., Paillard, C. & Ford, S. Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Dis. Aquat. Org. 48, 221–231 (2002).

    Google Scholar 

  • 20.

    Waechter, M., Le Roux, F., Nicolas, J., Marissal, E. & Berthe, F. Characterisation of Crassostrea gigas spat pathogenic bacteria. C.R. Biol. 325, 231–238 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Gay, M., Renault, T., Pons, A. & Le Roux, F. Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: Taxonomy and host alterations. Dis. Aquat. Org. 62, 65–74 (2004).

    Google Scholar 

  • 22.

    Paillard, C., Le Roux, F. & Borrego, J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477–498 (2004).

    Google Scholar 

  • 23.

    Prado, S., Romalde, J., Montes, J. & Barja, J. Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis. Aquat. Org. 67, 209–215 (2005).

    CAS 

    Google Scholar 

  • 24.

    Garnier, M., Labreuche, Y. & Nicolas, J. Molecular and phenotypic characterization of Vibrio aestuarianus subsp francensis subsp nov., a pathogen of the oyster Crassostrea gigas. Syst. Appl. Microbiol. 31, 358–365 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).

    PubMed 

    Google Scholar 

  • 27.

    Vezzulli, L. et al. Aquatic ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus. Environ. Microbiol. 17, 1065–1080 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Azandegbe, A. et al. Occurrence and seasonality of Vibrio aestuarianus in sediment and Crassostrea gigas haemolymph at two oyster farms in France. Dis. Aquat. Org. 91, 213–221 (2010).

    Google Scholar 

  • 29.

    Burreson, E. & Ford, S. A review of recent information on the Haplosporidia, with special reference to Haplosporidium nelsoni (MSX disease). Aquat. Living Resour. 17, 499–517 (2004).

    Google Scholar 

  • 30.

    Engelsma, M. Y. et al. Digenean trematodes and haplosporidian protozoans associated with summer mortality of cockles Cerastoderma edule in the Oosterschelde, The Netherlands. (European Association of Fish Pathologists Conference, Split, Croatia., 2011).

  • 31.

    Arzul, I. & Carnegie, R. B. New perspective on the haplosporidian parasites of molluscs. J. Invertebr. Pathol. 131, 32–42 (2015).

    PubMed 

    Google Scholar 

  • 32.

    Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Philos. Trans. R. Soc. B-Biol. Sci. 371, 20150215 (2016).

    Google Scholar 

  • 33.

    Ramilo, A., Abollo, E., Villalba, A. & Carballal, M. J. A Minchinia mercenariae-like parasite infects cockles Cerastoderma edule in Galicia (NW Spain). J. Fish Dis. 41, 41–48 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Lynch, S. A. et al. Detection of haplosporidian protistan parasites supports an increase to their known diversity, geographic range and bivalve host specificity. Parasitology 147, 584–592 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Albuixech-Marti, S., Lynch, S. A. & Culloty, S. C. Biotic and abiotic factors influencing haplosporidian species distribution in the cockle Cerastoderma edule in Ireland. J. Invertebr. Pathol. 174, 107425 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Azevedo, C., Conchas, R. & Montes, J. Description of Haplosporidium edule n. sp (Phylum Haplosporidia), a parasite of Cerastoderma edule (Mollusca, Bivalvia) with complex spore ornamentation. Eur. J. Protistol. 39, 161–167 (2003).

    Google Scholar 

  • 37.

    Carballal, M., Diaz, S. & Villalba, A. Urosporidium sp hyperparasite of the turbellarian Paravortex cardii in the cockle Cerastoderma edule. J. Invertebr. Pathol. 90, 104–107 (2005).

    PubMed 

    Google Scholar 

  • 38.

    Daoust, P., Conboy, G., McBurney, S. & Burgess, N. Interactive mortality factors in common loons from Maritime Canada. J. Wildl. Dis. 34, 524–531 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Converse, K. & Kidd, G. Duck plague epizootics in the United States, 1967–1995. J. Wildl. Dis. 37, 347–357 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Friend, M., McLean, R. & Dein, F. Disease emergence in birds: Challenges for the twenty-first century. Auk 118, 290–303 (2001).

    Google Scholar 

  • 41.

    Hubalek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40, 639–659 (2004).

    PubMed 

    Google Scholar 

  • 42.

    Quesada, R. J. et al. Detection and phylogenetic characterization of a novel herpesvirus from the trachea of two stranded common loons (Gavia immer). J. Wildl. Dis. 47, 233–239 (2011).

    PubMed 

    Google Scholar 

  • 43.

    Niemeyer, C. et al. Genetically diverse herpesviruses in South American Atlantic coast seabirds. PLoS ONE 12, e0178811 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Bookelaar, B., Lynch, S. A. & Culloty, S. C. Host plasticity supports spread of an aquaculture introduced virus to an ecosystem engineer. Parasit. Vectors 13, 498 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Honjo, M. N., Minamoto, T. & Kawabata, Z. Reservoirs of Cyprinid herpesvirus 3 (CyHV-3) DNA in sediments of natural lakes and ponds. Vet. Microbiol. 155, 183–190 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Evans, O., Paul-Pont, I. & Whittington, R. J. Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. Dis. Aquat. Org. 122, 247–255 (2017).

    CAS 

    Google Scholar 

  • 47.

    Slodkowicz-Kowalska, A. et al. Microsporidian species known to infect humans are present in aquatic birds: Implications for transmission via water?. Appl. Environ. Microbiol. 72, 4540–4544 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Malcekova, B., Valencakova, A., Molnar, L. & Kocisova, A. First detection and genotyping of human-associated microsporidia in wild waterfowl of Slovakia. Acta Parasitol. 58, 13–17 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Fermer, J., Culloty, S. C., Kelly, T. C. & O’Riordan, R. M. Intrapopulational distribution of Meiogymnophallus minutus (Digenea, Gymnophallidae) infections in its first and second intermediate host. Parasitol. Res. 105, 1231–1238 (2009).

    PubMed 

    Google Scholar 

  • 50.

    Yun, Y. et al. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in South Korea and migratory bird routes between China, South Korea, and Japan. Am. J. Trop. Med. Hyg. 93, 468–474 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Xu, Y., Gong, P., Wielstra, B. & Si, Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci. Rep. 6, 30262 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Harper, G. et al. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 14, 819–827 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 55.

    Read, D. S., Sheppard, S. K., Bruford, M. W., Glen, D. M. & Symondson, W. O. C. Molecular detection of predation by soil micro-arthropods on nematodes. Mol. Ecol. 15, 1963–1972 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Harwood, J. D. et al. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: A molecular approach. Mol. Ecol. 16, 4390–4400 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Albuixech-Martí, S., Culloty, S. C. & Lynch, S. A. Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology, 1–15 (2021).

  • 58.

    Lewis, L. J. & Tierney, T. D. Low tide waterbird surveys: Survey methods and guidance notes. Irish Wildlife Manuals 80 (2014).

  • 59.

    Garcia, C. et al. Vibrio aestuarianus subsp. cardii subsp. nov., pathogenic to the edible cockles Cerastoderma edule in France, and establishment of Vibrio aestuarianus subsp. aestuarianus subsp. nov. and Vibrio aestuarianus subsp. francensis subsp. nov. Int. J. Syst. Evol. Microbiol. 71, 004654 (2021).

  • 60.

    Lacoste, A. et al. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 46, 139–145 (2001).

    CAS 

    Google Scholar 

  • 61.

    Le Roux, F. et al. Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat. Living Resour. 15, 251–258 (2002).

    Google Scholar 

  • 62.

    Garnier, M., Labreuche, Y., Garcia, C., Robert, A. & Nicolas, J. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53, 187–196 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    McCleary, S. & Henshilwood, K. Novel quantitative TaqMan (R) MGB real-time PCR for sensitive detection of Vibrio aestuarianus in Crassostrea gigas. Dis. Aquat. Org. 114, 239–248 (2015).

    CAS 

    Google Scholar 

  • 64.

    Halpern, M., Senderovich, Y. & Izhaki, I. Waterfowl-The missing link in epidemic and pandemic cholera dissemination?. PLoS Pathog. 4, e1000173 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Rodríguez, J., López, P., Muñoz, J. & Rodríguez, N. Detection of Vibrio cholerae no toxigenico in migratory and resident birds (Charadriiformes) in a coastal lagoon from northeastern Venezuela. Saber 22, 122–126 (2010).

    Google Scholar 

  • 66.

    Fernandez-Delgado, M. et al. Prevalence and distribution of Vibrio spp. in wild aquatic birds of the Southern Caribbean Sea, Venezuela, 2011–12. J. Wildl. Dis. 52, 621–626 (2016).

  • 67.

    Laviad-Shitrit, S., Izhaki, I. & Halpern, M. Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog. 15, e1007814 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Buck, J. D. Isolation of Candida-albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida. Appl. Environ. Microbiol. 56, 826–828 (1990).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Miyasaka, J. et al. Isolation of Vibrio parahaemolyticus and Vibrio vulnificus from wild aquatic birds in Japan. Epidemiol. Infect. 134, 780–785 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Fu, S. et al. Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: A potential threat to the public health. Sci. Rep. 9, 16303 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Senderovich, Y., Izhaki, I. & Halpern, M. Fish as reservoirs and vectors of Vibrio cholerae. PLoS ONE 5, e8607 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Laviad-Shitrit, S. et al. Great cormorants (Phalacrocorax carbo) as potential vectors for the dispersal of Vibrio cholerae. Sci. Rep. 7, 7973 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Hossain, Z. Z., Farhana, I., Tulsiani’, S. M., Beguml, A. & Jensen, P. K. M. Transmission and toxigenic potential of Vibrio cholerae in hilsha fish (Tenualosa ilisha) for human consumption in Bangladesh. Front. Microbiol. 9, 222 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Bryant, D. M. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii). Estuar. Coast. Mar. Sci. 9, 369–384 (1979).

    ADS 

    Google Scholar 

  • 75.

    Hicklin, P. W. & Smith, P. C. Selection of foraging sites and invertebrate prey by migrant semipalmated sandpipers, Calidris-pusilla (Pallas), in Minas Basin, Bay of Fundy. Can. J. Zool. 62, 2201–2210 (1984).

    Google Scholar 

  • 76.

    Colwell, M. A. & Landrum, S. L. Nonrandom shorebird distribution and fine-scale variation in prey abundance. Condor 95, 94–103 (1993).

    Google Scholar 

  • 77.

    Ben-Horin, T., Bidegain, G., Huey, L., Narvaez, D. A. & Bushek, D. Parasite transmission through suspension feeding. J. Invertebr. Pathol. 131, 155–176 (2015).

    PubMed 

    Google Scholar 

  • 78.

    Pruzzo, C., Vezzulli, L. & Colwell, R. R. Global impact of Vibrio cholerae interactions with chitin. Environ. Microbiol. 10, 1400–1410 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Vezzulli, L., Pruzzo, C., Huq, A. & Colwell, R. R. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ. Microbiol. Rep. 2, 27–33 (2010).

    PubMed 

    Google Scholar 

  • 80.

    Freitas, C., Glatter, T. & Ringgaard, S. The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment. ISME J. 14, 230–244 (2020).

    PubMed 

    Google Scholar 

  • 81.

    Vezzulli, L. et al. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb. Ecol. 58, 808–818 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Piersma, T., Degoeij, P. & Tulp, I. An evaluation of intertidal feeding habitats from a shorebird perspective – Towards relevant comparisons between temperate and tropical mudflats. Neth. J. Sea Res. 31, 503–512 (1993).

    Google Scholar 

  • 83.

    Hervas, A., Tully, O., Hickey, J., O’Keefe, E. & Kelly, K. Assessment, monitoring and management of the Dundalk Bay and Waterford Cockle (Cerastoderma edule) Fisheries in 2007. BIM Fisheries Resource Series 7 (2008).

  • 84.

    Martins, R. C., Catry, T., Santos, C. D., Palmeirim, J. M. & Granadeiro, J. P. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European Estuary: Improved feeding conditions for northward migrants. PLoS ONE 8, e81174 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Lynch, S. A., Mulcahy, M. F. & Culloty, S. C. Efficiency of diagnostic techniques for the parasite, Bonamia ostreae, in the flat oyster, Ostrea edulis. Aquaculture 281, 17–21 (2008).

    Google Scholar 

  • 87.

    Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Freire, R., Arias, A., Mendez, J. & Insua, A. Identification of European commercial cockles (Cerastoderma edule and C. glaucum) by species-specific PCR amplification of the ribosomal DNA ITS region. Eur. Food Res. Technol. 232, 83–86 (2011).

  • 89.

    Thompson, J. et al. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103–4110 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: Evidence from the vibrios. ISME J. 6, 21–30 (2012).

    PubMed 

    Google Scholar 

  • 91.

    Renault, T. et al. Haplosporidiosis in the pacific oyster Crassostrea gigas from the French Atlantic coast. Dis. Aquat. Org. 42, 207–214 (2000).

    CAS 

    Google Scholar 

  • 92.

    Molloy, D. P., Giamberini, L., Stokes, N. A., Burreson, E. M. & Ovcharenko, M. A. Haplosporidium raabei n. sp (Haplosporidia): A parasite of zebra mussels, Dreissena polymorpha (Pallas, 1771). Parasitology 139, 463–477 (2012).

  • 93.

    Lynch, S. A., Dillane, E., Carlsson, J. & Culloty, S. C. Development and assessment of a sensitive and cost-effective polymerase chain reaction to detect ostreid herpesvirus 1 and variants. J. Shellfish Res. 32, 657–664 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel

    MIT makes strides on climate action plan