in

Winter distribution of juvenile and sub-adult male Antarctic fur seals (Arctocephalus gazella) along the western Antarctic Peninsula

  • 1.

    Knox, G. A. Biology of the Southern Ocean (CRC Press, 2006). https://doi.org/10.1201/9781420005134

    Book 

    Google Scholar 

  • 2.

    Thomas, D. N. et al. The Biology of Polar Regions: The Biology of Polar Regions (Oxford University Press, 2008).

    Google Scholar 

  • 3.

    Trathan, P. N. & Hill, S. L. The Importance of Krill Predation in the Southern Ocean. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 321–350 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_9.

    Chapter 

    Google Scholar 

  • 4.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Siegel, V. & Watkins, J. L. Distribution, biomass and demography of antarctic krill, Euphausia superba. In Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 21–100 (Springer, 2016). https://doi.org/10.1007/978-3-319-29279-3_2.

    Chapter 

    Google Scholar 

  • 6.

    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Ribic, C. A., Ainley, D. G. & Fraser, W. R. Habitat selection by marine mammals in the marginal ice zone. Antarct. Sci. 3, 181–186 (1991).

    ADS 

    Google Scholar 

  • 9.

    Takahashi, A. et al. Migratory movements and winter diving activity of Adélie penguins in East Antarctica. Mar. Ecol. Prog. Ser. 589, 227–239 (2018).

    ADS 

    Google Scholar 

  • 10.

    Hückstädt, L. A. et al. Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula. Nat. Clim. Change 10, 472–477 (2020).

    ADS 

    Google Scholar 

  • 11.

    Lowther, A. D., Staniland, I., Lydersen, C. & Kovacs, K. M. Male Antarctic fur seals: Neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery. Sci. Rep. 10, 18436 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Forcada, J. & Staniland, I. J. Antarctic fur seal Arctocephalus gazella. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 36–42 (Academic Press, 2009).

    Google Scholar 

  • 13.

    Boyd, I. L., McCafferty, D. J., Reid, K., Taylor, R. & Walker, T. R. Dispersal of male and female Antarctic fur seals (Arctocephalus gazella). Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f97-314 (1998).

    Article 

    Google Scholar 

  • 14.

    Cherel, Y., Kernaléguen, L., Richard, P. & Guinet, C. Whisker isotopic signature depicts migration patterns and multi-year intra- and inter-individual foraging strategies in fur seals. Biol. Lett. 5, 830–832 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Kernaléguen, L. et al. Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers. PLoS ONE 7, e32916 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Kernaléguen, L., Arnould, J. P. Y., Guinet, C. & Cherel, Y. Determinants of individual foraging specialization in large marine vertebrates, the Antarctic and subantarctic fur seals. J. Anim. Ecol. 84, 1081–1091 (2015).

    PubMed 

    Google Scholar 

  • 17.

    Arthur, B. et al. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella). Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 171–181 (2017).

    ADS 

    Google Scholar 

  • 18.

    Arthur, B. et al. Managing for change: Using vertebrate at sea habitat use to direct management efforts. Ecol. Indic. 91, 338–349 (2018).

    Google Scholar 

  • 19.

    Reisinger, R. R. et al. Habitat modelling of tracking data from multiple marine predators identifies important areas in the Southern Indian Ocean. Divers. Distrib. 24, 535–550 (2018).

    MathSciNet 

    Google Scholar 

  • 20.

    Wege, M., de Bruyn, P. J. N., Hindell, M. A., Lea, M.-A. & Bester, M. N. Preferred, small-scale foraging areas of two Southern Ocean fur seal species are not determined by habitat characteristics. BMC Ecol. 19, 36 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Jones, K. A. et al. Intra-specific niche partitioning in antarctic fur seals, Arctocephalus gazella. Sci. Rep. 10, 3238 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Siniff, D. B., Garrott, R. A., Rotella, J. J., Fraser, W. R. & Ainley, D. G. Opinion: Projecting the effects of environmental change on Antarctic seals. Antarct. Sci. 20, 425–435 (2008).

    ADS 

    Google Scholar 

  • 23.

    Raymond, B. et al. Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).

    Google Scholar 

  • 24.

    Bestley, S., Jonsen, I. D., Hindell, M. A., Harcourt, R. G. & Gales, N. J. Taking animal tracking to new depths: Synthesizing horizontal–vertical movement relationships for four marine predators. Ecology 96, 417–427 (2015).

    PubMed 

    Google Scholar 

  • 25.

    Kernaléguen, L. et al. Early-life sexual segregation: Ontogeny of isotopic niche differentiation in the Antarctic fur seal. Sci. Rep. 6, 33211 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Payne, M. R. Growth in the Antarctic fur seal Arctocephalus gazella. J. Zool. 187, 1–20 (1979).

    Google Scholar 

  • 27.

    Costa, D., Goebel, M. E. & Sterling, J. T. Foraging energetics and diving behavior of the Antarctic fur seal, Arctocephalus gazzella at Cape Shirreff, Livingston Island. In Antarctic Ecosystems: Models for Wider Ecological Understanding (eds Davision, W. et al.) 77–84 (New Zealand Natural Science Press, 2000).

    Google Scholar 

  • 28.

    Staniland, I. J. et al. Geographical variation in the behaviour of a central place forager: Antarctic fur seals foraging in contrasting environments. Mar. Biol. 157, 2383–2396 (2010).

    Google Scholar 

  • 29.

    Blanchet, M.-A. et al. At-sea behaviour of three krill predators breeding at Bouvetøya—Antarctic fur seals, macaroni penguins and chinstrap penguins. Mar. Ecol. Prog. Ser. 477, 285–302 (2013).

    ADS 

    Google Scholar 

  • 30.

    Jeanniard-du-Dot, T., Trites, A. W., Arnould, J. P. Y. & Guinet, C. Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS ONE 12, e0174001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Favilla, A. B. & Costa, D. P. Thermoregulatory strategies of diving air-breathing marine vertebrates: A review. Front. Ecol. Evol. 8, 292 (2020).

    Google Scholar 

  • 32.

    Staniland, I. J. & Robinson, S. L. Segregation between the sexes: Antarctic fur seals, Arctocephalus gazella, foraging at South Georgia. Anim. Behav. 75, 1581–1590 (2008).

    Google Scholar 

  • 33.

    Reid, K. The diet of Antarctic fur seals (Arctocephalus gazella Peters 1875) during winter at South Georgia. Antarct. Sci. 7, 241–249 (1995).

    ADS 

    Google Scholar 

  • 34.

    Kirkman, S. P., Wilson, W., Klages, N. T. W., Bester, M. N. & Isaksen, K. Diet and estimated food consumption of Antarctic fur seals at Bouvetøya during summer. Polar Biol. 23, 745–752 (2000).

    Google Scholar 

  • 35.

    Casaux, R., Baroni, A., Arrighetti, F., Ramón, A. & Carlini, A. Geographical variation in the diet of the Antarctic fur seal Arctocephalus gazella. Polar Biol. 26, 753–758 (2003).

    Google Scholar 

  • 36.

    Casaux, R., Baroni, A. & Ramón, A. Diet of Antarctic fur seals Arctocephalus gazella at the Danco Coast, Antarctic Peninsula. Polar Biol. 26, 49–54 (2003).

    Google Scholar 

  • 37.

    Davis, D., Staniland, I. J. & Reid, K. Spatial and temporal variability in the fish diet of Antarctic fur seal (Arctocephalus gazella) in the Atlantic sector of the Southern Ocean. Can. J. Zool. https://doi.org/10.1139/z06-071 (2006).

    Article 

    Google Scholar 

  • 38.

    Casaux, R., Juares, M., Carlini, A. & Corbalán, A. The diet of the Antarctic fur seal Arctocephalus gazella at the South Orkney Islands in ten consecutive years. Polar Biol. 39, 1197–1206 (2016).

    Google Scholar 

  • 39.

    Tarroux, A., Lowther, A. D., Lydersen, C. & Kovacs, K. M. Temporal shift in the isotopic niche of female Antarctic fur seals from Bouvetøya. Polar Res. 35, 31335 (2016).

    Google Scholar 

  • 40.

    Garcia-Garin, O. et al. No evidence of microplastics in Antarctic fur seal scats from a hotspot of human activity in Western Antarctica. Sci. Total Environ. 737, 140210 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Boyd, I. L. Estimating food consumption of marine predators: Antarctic fur seals and macaroni penguins. J. Appl. Ecol. 39, 103–119 (2002).

    Google Scholar 

  • 42.

    Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world : vol. 4 : Sea mammals. (2014).

  • 43.

    Melin, S. R. et al. Reversible immobilization of free-ranging adult male California sea lions (Zalophus californianus). Mar. Mammal Sci. 29, E529–E536 (2013).

    Google Scholar 

  • 44.

    Pussini, N. & Goebel, M. E. A safer protocol for field immobilization of leopard seals (Hydrurga leptonyx). Mar. Mammal Sci. 31, 1549–1558 (2015).

    Google Scholar 

  • 45.

    Spelman, L. H. Reversible anesthesia of captive California sea lions (Zalophus californianus) with medetomidine, midazolam, butorphanol, and isoflurane. J. Zoo Wildl. Med. Off. Publ. Am. Assoc. Zoo Vet. 35, 65–69 (2004).

    Google Scholar 

  • 46.

    Cook, T. A. Butorphanol tartrate: An intravenous analgesic for outpatient surgery. Otolaryngol. Head Neck Surg. J. Am. Acad. Otolaryngol. Head Nexk Surg. 91, 251–254 (1983).

    CAS 

    Google Scholar 

  • 47.

    Ropert-Coudert, Y. et al. The retrospective analysis of Antarctic tracking data project. Sci. Data 7, 94 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mammal Sci. 24, 315–325 (2008).

    Google Scholar 

  • 49.

    Bonadonna, F., Lea, M.-A., Dehorter, O. & Guinet, C. Foraging ground fidelity and route-choice tactics of a marine predator: The Antarctic fur seal Arctocephalus gazella. Mar. Ecol. Prog. Ser. 223, 287–297 (2001).

    ADS 

    Google Scholar 

  • 50.

    Lea, M.-A. & Dubroca, L. Fine-scale linkages between the diving behaviour of Antarctic fur seals and oceanographic features in the southern Indian Ocean. ICES J. Mar. Sci. 60, 990–1002 (2003).

    Google Scholar 

  • 51.

    Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Jonsen, I. D. et al. A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags. Mov. Ecol. 8, 31 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Hazen, E. L. et al. Where did they not go? Considerations for generating pseudo-absences for telemetry-based habitat models. Mov. Ecol. 9, 5 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    O’Toole, M., Queiroz, N., Humphries, N. E., Sims, D. W. & Sequeira, A. M. M. Quantifying effects of tracking data bias on species distribution models. Methods Ecol. Evol. 12, 170–181 (2021).

    Google Scholar 

  • 55.

    Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelemetry 5, 23 (2017).

    Google Scholar 

  • 56.

    Labrousse, S. et al. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica. Prog. Oceanogr. 156, 17–40 (2017).

    ADS 

    Google Scholar 

  • 57.

    Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, eaar3001 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Google Scholar 

  • 60.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  • 61.

    Hijmans, R. J., Phillips, S. & Elith, J. L. dismo: Species Distribution Modeling. (2020).

  • 62.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

    Google Scholar 

  • 64.

    Scales, K. L. et al. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecol. Appl. 27, 2313–2329 (2017).

    PubMed 

    Google Scholar 

  • 65.

    Pya, N. & Wood, S. N. Shape constrained additive models. Stat. Comput. 25, 543–559 (2015).

    MathSciNet 
    MATH 

    Google Scholar 

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • 67.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

    ADS 

    Google Scholar 

  • 68.

    Brodie, S. et al. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. (2018).

  • 69.

    Becker, E. A. et al. Moving Towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).

    ADS 

    Google Scholar 

  • 70.

    Lellouche, J.-M. et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system. Ocean Sci. 14, 1093–1126 (2018).

    ADS 

    Google Scholar 

  • 71.

    Handcock, M. S. & Raphael, M. N. Modeling the annual cycle of daily Antarctic sea ice extent. Cryosphere 14, 2159–2172 (2020).

    ADS 

    Google Scholar 

  • 72.

    Smith, G. C. et al. Polar ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Front. Mar. Sci. (2019).

  • 73.

    March, D., Boehme, L., Tintoré, J., Vélez-Belchi, P. J. & Godley, B. J. Towards the integration of animal-borne instruments into global ocean observing systems. Glob. Change Biol. 26, 586–596 (2020).

    ADS 

    Google Scholar 

  • 74.

    Santora, J. A. Dynamic intra-seasonal habitat use by Antarctic fur seals suggests migratory hotspots near the Antarctic Peninsula. Mar. Biol. 160, 1383–1393 (2013).

    Google Scholar 

  • 75.

    Vergani, D. F. & Coria, N. R. Increase in numbers of male fur seals Arctocephalus gazella during the summer autumn period at Mossman Peninsula (Laurie Island). Polar Biol. 9, 487–488 (1989).

    Google Scholar 

  • 76.

    Rutishauser, M. R., Costa, D. P., Goebel, M. E. & Williams, T. M. Ecological implications of body composition and thermal capabilities in young antarctic fur seals (Arctocephalus gazella). Physiol. Biochem. Zool. PBZ 77, 669–681 (2004).

    PubMed 

    Google Scholar 

  • 77.

    Vales, D. G., Cardona, L., García, N. A., Zenteno, L. & Crespo, E. A. Ontogenetic dietary changes in male South American fur seals Arctocephalus australis in Patagonia. Mar. Ecol. Prog. Ser. 525, 245–260 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 78.

    Cardona, L., Vales, D., Aguilar, A., Crespo, E. & Zenteno, L. Temporal variability in stable isotope ratios of C and N in the vibrissa of captive and wild adult South American sea lions Otaria byronia: More than just diet shifts. Mar. Mammal Sci. 33, 975–990 (2017).

    CAS 

    Google Scholar 

  • 79.

    Costa, D. P., Gales, N. J. & Goebel, M. E. Aerobic dive limit: How often does it occur in nature?. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129, 771–783 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Biuw, M., Krafft, B. A., Hofmeyr, G. J. G., Lydersen, C. & Kovacs, K. M. Time budgets and at-sea behaviour of lactating female Antarctic fur seals Arctocephalus gazella at Bouvetøya. Mar. Ecol. Prog. Ser. 385, 271–284 (2009).

    ADS 

    Google Scholar 

  • 81.

    Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 951–984 (1999).

    ADS 

    Google Scholar 

  • 82.

    Lea, M.-A., Hindell, M., Guinet, C. & Goldsworthy, S. Variability in the diving activity of Antarctic fur seals, Arctocephalus gazella, at Iles Kerguelen. Polar Biol. 25, 269–279 (2002).

    Google Scholar 

  • 83.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the antarctic peninsula. Clim. Change 60, 243–274 (2003).

    Google Scholar 

  • 84.

    Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pup production of antarctic fur seals. Ecology 86, 2408–2417 (2005).

    Google Scholar 

  • 85.

    Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Schwarz, L. K., Goebel, M. E., Costa, D. P. & Kilpatrick, A. M. Top-down and bottom-up influences on demographic rates of Antarctic fur seals Arctocephalus gazella. J. Anim. Ecol. 82, 903–911 (2013).

    PubMed 

    Google Scholar 

  • 87.

    Hoffman, J. I. & Forcada, J. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm. Biol. 77, 71–73 (2012).

    Google Scholar 

  • 88.

    Hucke-Gaete, R., Osman, L. P., Moreno, C. A. & Torres, D. Examining natural population growth from near extinction: The case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biol. 27, 304–311 (2004).

    Google Scholar 


  • Source: Ecology - nature.com

    Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    Effect of biostimulants on the growth, yield and nutritional value of Capsicum annuum grown in an unheated plastic tunnel