in

Lion and spotted hyena distributions within a buffer area of the Serengeti-Mara ecosystem

  • 1.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed 

    Google Scholar 

  • 2.

    Riggio, J. et al. The size of savannah Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2013).

    Google Scholar 

  • 3.

    Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Tanner, E. et al. Wolves contribute to disease control in a multi-host system. Sci. Rep. 9, 1–12 (2019).

    ADS 

    Google Scholar 

  • 7.

    O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. Evol. 2, 229–236 (2018).

    PubMed 

    Google Scholar 

  • 8.

    Prugh, L. R. & Sivy, K. J. Enemies with benefits: integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 23, 902–918 (2020).

    PubMed 

    Google Scholar 

  • 9.

    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Wilfred, P. Towards sustainable wildlife management areas in Tanzania. Trop. Conserv. Sci. 3, 103–116 (2010).

    Google Scholar 

  • 11.

    Sinclair, A. R., Metzger, K. L., Mduma, S. A. & Fryxell, J. M. Serengeti IV: Sustaining Biodiversity in a Coupled Human-Natural System (University of Chicago Press, 2015).

    Google Scholar 

  • 12.

    Crooks, K. R. & Sanjayan, M. Connectivity Conservation Vol. 14 (Cambridge University Press, 2006).

    Google Scholar 

  • 13.

    Balme, G. A., Slotow, R. & Hunter, L. T. Edge effects and the impact of non-protected areas in carnivore conservation: Leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).

    Google Scholar 

  • 14.

    Lindsey, P. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).

    Google Scholar 

  • 15.

    Elliot, N. B. & Gopalaswamy, A. M. Toward accurate and precise estimates of lion density. Conserv. Biol. 31, 934–943 (2017).

    PubMed 

    Google Scholar 

  • 16.

    Masenga, E. et al. Strychnine poisoning in African wild dogs (Lycaon pictus) in the Loliondo game controlled area, Tanzania. Int. J. Biodivers. Conserv. 5, 367–370 (2013).

    Google Scholar 

  • 17.

    Metzger, K., Sinclair, A., Hilborn, R., Hopcraft, J. G. C. & Mduma, S. A. Evaluating the protection of wildlife in parks: The case of African buffalo in Serengeti. Biodivers. Conserv. 19, 3431–3444 (2010).

    Google Scholar 

  • 18.

    Mogensen, N. L., Ogutu, J. O. & Dabelsteen, T. The effects of pastoralism and protection on lion behaviour, demography and space use in the Mara Region of Kenya. Afr. Zool. 46, 78–87 (2011).

    Google Scholar 

  • 19.

    Kiffner, C., Meyer, B., Mühlenberg, M. & Waltert, M. Plenty of prey, few predators: what limits lions Panthera leo in Katavi National Park, western Tanzania?. Oryx 43, 52–59 (2009).

    Google Scholar 

  • 20.

    Kiffner, C., Stoner, C. & Caro, T. Edge effects and large mammal distributions in a national park. Anim. Conserv. 16, 97–107 (2013).

    Google Scholar 

  • 21.

    Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).

    Google Scholar 

  • 22.

    Hofer, H. & East, M. Population dynamics, population size, and the commuting system of Serengeti spotted hyenas. Serengeti II Dyn. Manag. Conserv. Ecosyst. 2, 332 (1995).

    Google Scholar 

  • 23.

    Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. Adv. Study Behav. 42, 189–229 (2010).

    Google Scholar 

  • 24.

    Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. biol. 16, 488–502 (2002).

    Google Scholar 

  • 25.

    Martin, J. et al. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods Ecol. Evol. 2, 595–601 (2011).

    ADS 

    Google Scholar 

  • 26.

    Prins, H. H., Grootenhuis, J. G. & Dolan, T. T. Wildlife Conservation by Sustainable Use Vol. 12 (Springer Science & Business Media, 2012).

    Google Scholar 

  • 27.

    Knapp, E. J. Why poaching pays: a summary of risks and benefits illegal hunters face in Western Serengeti, Tanzania. Trop. Conserv. Sci. 5, 434–445 (2012).

    ADS 

    Google Scholar 

  • 28.

    Revilla, E., Palomares, F. & Delibes, M. Edge-core effects and the effectiveness of traditional reserves in conservation: Eurasian badgers in Doñana National Park. Conserv. Biol. 15, 148–158 (2001).

    Google Scholar 

  • 29.

    Lindsey, P. A. et al. The bushmeat trade in African savannas: Impacts, drivers, and possible solutions. Biol. Conserv. 160, 80–96 (2013).

    Google Scholar 

  • 30.

    Ikanda, D. & Packer, C. Ritual vs. retaliatory killing of African lions in the Ngorongoro Conservation Area, Tanzania. Endanger. Species Res. 6, 67–74 (2008).

    Google Scholar 

  • 31.

    Belant, J. L. et al. Estimating lion abundance using N-mixture models for social species. Sci. Rep. 6, 1–9 (2016).

    Google Scholar 

  • 32.

    Hofer, H. & East, M. L. The commuting system of Serengeti spotted hyaenas: how a predator copes with migratory prey I. Social organization. Anim. Behav. 46, 547–557 (1993).

    Google Scholar 

  • 33.

    Durant, S. M. et al. Long-term trends in carnivore abundance using distance sampling in Serengeti National Park, Tanzania. J. Appl. Ecol. 48, 1490–1500 (2011).

    Google Scholar 

  • 34.

    Swanson, A. B. Living with Lions: Spatiotemporal Aspects of Coexistence in Savanna Carnivores (University of Minnesota, 2014).

    Google Scholar 

  • 35.

    Masenga, E. H., Lyamuya, R. D., Mjingo, E. E., Fyumagwa, R. D. & Røskaft, E. Communal knowledge and perceptions of African wild dog (Lycaon pictus) reintroduction in the western part of Serengeti National Park, Tanzania. Int. J. Biodivers. Conserv. 9, 122–129 (2017).

    Google Scholar 

  • 36.

    Hopcraft, J. G. C., Sinclair, A. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).

    Google Scholar 

  • 37.

    Packer, C. & Pusey, A. E. Adaptations of female lions to infanticide by incoming males. Am. Nat. 121, 716–728 (1983).

    Google Scholar 

  • 38.

    Kruuk, H. & Turner, M. Comparative notes on predation by lion, leopard, cheetah and wild dog in the Serengeti area, East Africa. Mammalia 31, 1–27 (1967).

    Google Scholar 

  • 39.

    Green, D. S., Johnson-Ulrich, L., Couraud, H. E. & Holekamp, K. E. Anthropogenic disturbance induces opposing population trends in spotted hyenas and African lions. Biodiver. Conserv. 27, 871–889. https://doi.org/10.1007/s10531-017-1469-7 (2018).

    Article 

    Google Scholar 

  • 40.

    Kolowski, J. M., Katan, D., Theis, K. R. & Holekamp, K. E. Daily patterns of activity in the spotted hyena. J. Mamm. 88, 1017–1028 (2007).

    Google Scholar 

  • 41.

    Šálek, M., Kreisinger, J., Sedláček, F. & Albrecht, T. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape?. Landsc. Urban Plan. 98, 86–91 (2010).

    Google Scholar 

  • 42.

    Mosser, A., Fryxell, J. M., Eberly, L. & Packer, C. Serengeti real estate: density vs. fitness-based indicators of lion habitat quality. Ecol. Lett. 12, 1050–1060 (2009).

    PubMed 

    Google Scholar 

  • 43.

    Schmitt, J. A. Improving Conservation Efforts in the Serengeti Ecosystem, Tanzania: An Examination of Knowledge, Benefits, Costs, and Attitudes (University of Minnesota, 2010).

    Google Scholar 

  • 44.

    Makacha, S., Msingwa, M. J. & Frame, G. W. Threats to the Serengeti herds. Oryx 16, 437–444 (1982).

    Google Scholar 

  • 45.

    Crosmary, W.-G. et al. Lion densities in selous game reserve, Tanzania. Afr. J. Wildl. Res. 48, 1–6 (2018).

    Google Scholar 

  • 46.

    Belant, J. L. et al. Track surveys do not provide accurate or precise lion density estimates in serengeti. Glob. Ecol. 19, e00651 (2019).

    Google Scholar 

  • 47.

    Midlane, N., O’Riain, M. J., Balme, G. A. & Hunter, L. T. B. To track or to call: comparing methods for estimating population abundance of African lions Panthera leo in Kafue National Park. Biodiver. Conserv. 24, 1311–1327. https://doi.org/10.1007/s10531-015-0858-z (2015).

    Article 

    Google Scholar 

  • 48.

    Ogutu, J. O. & Dublin, H. T. The response of lions and spotted hyaenas to sound playbacks as a technique for estimating population size. Afr. J. Ecol. 36, 83–95. https://doi.org/10.1046/j.1365-2028.1998.113-89113.x (1998).

    Article 

    Google Scholar 

  • 49.

    Belant, J. L. et al. Temporal and spatial variation of broadcasted vocalizations does not reduce lion Panthera leo habituation. Wildl. Biol. wlb. 00287 (2017).

  • 50.

    Cozzi, G., Broekhuis, F., McNutt, J. & Schmid, B. Density and habitat use of lions and spotted hyenas in northern Botswana and the influence of survey and ecological variables on call-in survey estimation. Biodiver. Conserv. 22, 2937–2956 (2013).

    Google Scholar 

  • 51.

    M’soka, J., Creel, S., Becker, M. S. & Droge, E. Spotted hyaena survival and density in a lion depleted ecosystem: The effects of prey availability, humans and competition between large carnivores in African savannahs. Biol. Conserv. 201, 348–355 (2016).

    Google Scholar 

  • 52.

    Croes, B. et al. The impact of trophy hunting on lions (Panthera leo) and other large carnivores in the Bénoué Complex, northern Cameroon. Biol. Conserv. 144, 3064–3072 (2011).

    Google Scholar 

  • 53.

    Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 54.

    National Bureau of Statistics. Tanzania in Figures 2012 (The United Republic of Tanzania, 2013).

  • 55.

    McNaughton, S. Serengeti grassland ecology: The role of composite environmental factors and contingency in community organization. Ecol. Monograph. 53, 291–320 (1983).

    Google Scholar 

  • 56.

    Reed, D., Anderson, T., Dempewolf, J., Metzger, K. & Serneels, S. The spatial distribution of vegetation types in the Serengeti ecosystem: the influence of rainfall and topographic relief on vegetation patch characteristics. J. Biogeogr. 36, 770–782 (2009).

    Google Scholar 

  • 57.

    Sollmann, R., Gardner, B., Belant, J. L., Wilton, C. M. & Beringer, J. Habitat associations in a recolonizing, low‐density black bear population. Ecosphere 7 (2016).

  • 58.

    Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities (Elsevier, 2008).

    Google Scholar 

  • 59.

    Chandler, R. B., Royle, J. A. & King, D. I. Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429–1435 (2011).

    PubMed 

    Google Scholar 

  • 60.

    Royle, J. A. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115 (2004).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • 61.

    Kellner, K. & Meredith, M. Package ‘jagsUI’. (2021).

  • 62.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).

  • 63.

    Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).

    MathSciNet 
    MATH 

    Google Scholar 

  • 64.

    Kuo, L. & Mallick, B. Variable selection for regression models. Indian J. Stat. 65–81 (1998).

  • 65.

    Congdon, P. Bayesian Models for Categorical Data (John Wiley and Sons, 2005).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    Effect of biostimulants on the growth, yield and nutritional value of Capsicum annuum grown in an unheated plastic tunnel