Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).
Google Scholar
Wilson, K. A. et al. Conserving biodiversity efficiently: What to do, where, and when. PLoS Biol. 5, 1850–1861. https://doi.org/10.1371/journal.pbio.0050223 (2007).
Google Scholar
Carr, M. H. et al. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves. Ecol. Appl. 13, 90–107. https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2 (2003).
Google Scholar
Coles, R. G. et al. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuar. Coast. Shelf Sci. 153, A1–A12. https://doi.org/10.1016/j.ecss.2014.07.020 (2015).
Google Scholar
Beger, M. et al. Incorporating asymmetric connectivity into spatial decision making for conservation. Conserv. Lett. 3, 359–368. https://doi.org/10.1111/j.1755-263X.2010.00123.x (2010).
Google Scholar
Brodie, J. & Waterhouse, J. A critical review of environmental management of the ‘not so Great’ Barrier Reef. Estuar. Coast. Shelf Sci. 104, 1–22. https://doi.org/10.1016/j.ecss.2012.03.012 (2012).
Google Scholar
Collier, C. J. et al. An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay. Environ. Sustain. Indicators 7, 100042. https://doi.org/10.1016/j.ecolind.2012.04.005 (2020).
Google Scholar
Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan. http://www.environment.gov.au/system/files/resources/d98b3e53-146b-4b9c-a84a-2a22454b9a83/files/reef-2050-long-term-sustainability-plan.pdf (2015). (Accessed 09 June 2021).
Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan—July 2018. https://www.environment.gov.au/system/files/resources/35e55187-b76e-4aaf-a2fa-376a65c89810/files/reef-2050-long-term-sustainability-plan-2018.pdf (2018). (Accessed 09 June 2021).
Tulloch, V. J. et al. Linking threat maps with management to guide conservation investment. Biol. Cons. 245, 108527. https://doi.org/10.1016/j.biocon.2020.108527 (2020).
Google Scholar
Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Mapp. Seafloor Habitat Characterization Geol. Assoc. Canada Special Paper 47, 145–159 (2007).
Grech, A. et al. Spatial patterns of seagrass dispersal and settlement. Divers. Distrib. 22, 1150–1162. https://doi.org/10.1111/ddi.12479 (2016).
Google Scholar
Young, M. & Carr, M. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring. PLoS ONE 10, e0116200. https://doi.org/10.1371/journal.pone.0116200 (2015).
Google Scholar
Foley, M. M. et al. Guiding ecological principles for marine spatial planning. Mar. Policy 34, 955–966. https://doi.org/10.1016/j.marpol.2010.02.001 (2010).
Google Scholar
Diggon, S. et al. The marine plan partnership: Indigenous community-based marine spatial planning. Mar. Policy. https://doi.org/10.1016/j.marpol.2019.04.014 (2019).
Google Scholar
Kenchington, R. & Day, J. Zoning, a fundamental cornerstone of effective Marine Spatial Planning: Lessons learnt from the Great Barrier Reef, Australia. J. Coast. Conserv. 15, 271–278. https://doi.org/10.1007/s11852-011-0147-2 (2011).
Google Scholar
Noble, M. M., Harasti, D., Pittock, J. & Doran, B. Understanding the spatial diversity of social uses, dynamics, and conflicts in marine spatial planning. J. Environ. Manage. 246, 929–940. https://doi.org/10.1016/j.jenvman.2019.06.048 (2019).
Google Scholar
Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Cons. 226, 120–126. https://doi.org/10.1016/j.biocon.2018.07.009 (2018).
Google Scholar
den Hartog, C. & Kuo, J. Seagrasses: Biology, Ecology and Conservation Ch. 1 1–23 (Springer Netherlands, 2006).
Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).
Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Cons. 144, 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010 (2011).
Google Scholar
Coles, R., McKenzie, L., De’ath, G., Roelofs, A. & Long, W. L. Spatial distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World Heritage Area. Mar. Ecol. Prog. Ser. 392, 57–68. https://doi.org/10.3354/meps08197 (2009).
Google Scholar
McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041. https://doi.org/10.1088/1748-9326/ab7d06 (2020).
Google Scholar
Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000).
Google Scholar
Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733. https://doi.org/10.1126/science.aal1956 (2017).
Google Scholar
Coles, R. G., Lee Long, W. J., Watson, R. A. & Derbyshire, K. J. Distribution of seagrasses, and their fish and penaeid prawn communities, in Cairns Harbour, a tropical estuary, Northern Queensland, Australia. Mar. Freshw. Res. 44, 193–210. https://doi.org/10.1071/MF9930193 (1993).
Google Scholar
de los Santos, C. B. et al. Seagrass ecosystem services: Assessment and scale of benefits. Out Blue Value Seagrasses Environ. People. 19–21 (2020).
Marsh, H., O’Shea, T. J. & Reynolds, J. E. III. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).
Google Scholar
Scott, A. L. et al. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Front. Plant Sci. 9, 1–10. https://doi.org/10.3389/fpls.2018.00127 (2018).
Google Scholar
Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509. https://doi.org/10.1038/ngeo1477 (2012).
Google Scholar
Carter, A., Taylor, H. & Rasheed, M. Torres Strait Mapping: Seagrass Consolidation, 2002–2014 Vol. 47 (James Cook University, 2014).
Lee Long, W. J., Mellors, J. E. & Coles, R. G. Seagrasses between Cape York and Hervey Bay, Queensland, Australia. Austr. J. Mar. Freshw. Res. 44, 19–32. https://doi.org/10.1071/MF9930019 (1993).
Google Scholar
Maxwell, P. et al. Seagrasses of Moreton Bay Quandamooka: Diversity, ecology and resilience. in Moreton Bay Quandamooka & Catchment: Past, Present, and Future (eds I. R. Tibbetts et al.) 279–298 (Moreton Bay Foundation Ltd, 2019).
Lambert, V. M. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2021.112494 (2021).
Google Scholar
McKenna, S. A. et al. Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J. Biosci. 40, 389–398. https://doi.org/10.1007/s12038-015-9516-6 (2015).
Google Scholar
Collier, C. J., Waycott, M. & McKenzie, L. J. Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol. Indicators 23, 211–219. https://doi.org/10.1016/j.ecolind.2012.04.005 (2012).
Google Scholar
York, P. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: Annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167. https://doi.org/10.1038/srep13167 (2015).
Google Scholar
Grech, A., Coles, R. & Marsh, H. A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Mar. Policy 35, 560–567. https://doi.org/10.1016/j.marpol.2011.03.003 (2011).
Google Scholar
Brodie, J. & Pearson, R. G. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence. Estuar. Coast. Shelf Sci. 183, 438–451. https://doi.org/10.1016/j.ecss.2016.05.008 (2016).
Google Scholar
York, P. H. et al. Identifying knowledge gaps in seagrass research and management: An Australian perspective. Mar. Environ. Res. 127, 163–172. https://doi.org/10.1016/j.marenvres.2016.06.006 (2017).
Google Scholar
Carruthers, T. J. B. et al. Seagrass habitats of Northeast Australia: Models of key processes and controls. Bull. Mar. Sci. 71, 1153–1153 (2002).
Waycott, M., Longstaff, B. J. & Mellors, J. Seagrass population dynamics and water quality in the Great Barrier Reef region: A review and future research directions. Mar. Pollut. Bull. 51, 343–350. https://doi.org/10.1016/j.marpolbul.2005.01.017 (2005).
Google Scholar
Grech, A. & Coles, R. G. An ecosystem-scale predictive model of coastal seagrass distribution. Aquat. Conserv.-Mar. Freshw. Ecosyst. 20, 437–444. https://doi.org/10.1002/aqc.1107 (2010).
Google Scholar
Carter, A. et al. Synthesizing 35 years of seagrass spatial data from the Great Barrier Reef World Heritage Area, Queensland, Australia. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10193 (2021).
Google Scholar
Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30 m. Dataset. http://pid.geoscience.gov.au/dataset/115066 (2017). (Accessed 10 March 2020).
Bishop-Taylor, R., Sagar, S., Lymburner, L. & Beaman, R. Between the tides: Modelling the elevation of Australia’s exposed intertidal zone at continental scale. Estuar. Coast. Shelf Sci. 223, 115–128. https://doi.org/10.1016/j.ecss.2019.03.006 (2019).
Google Scholar
Geoscience Australia. Intertidal Extents Model 25m. v. 2.0.0. Dataset. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search?node=srv#/metadata/7d6f3432-5f93-45ee-8d6c-14b26740048a (2017). (Accessed 10 March 2021).
Steven, A. D. et al. eReefs: An operational information system for managing the Great Barrier Reef. J. Operat. Oceanogr. 12, S12–S28. https://doi.org/10.1080/1755876X.2019.1650589 (2019).
Google Scholar
Baird, M. E. et al. CSIRO environmental modelling suite (EMS): Scientific description of the optical and biogeochemical models (vB3p0). Geosci. Model Dev. 13, 4503–4553. https://doi.org/10.5194/gmd-13-4503-2020 (2020).
Google Scholar
Baird, M. E. et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data. Environ. Model. Softw. 78, 79–96. https://doi.org/10.1016/j.envsoft.2015.11.025 (2016).
Google Scholar
Margvelashvili, N. et al. Simulated fate of catchment-derived sediment on the Great Barrier Reef shelf. Mar. Pollut. Bull. 135, 954–962. https://doi.org/10.1016/j.marpolbul.2018.08.018 (2018).
Google Scholar
Griffiths, L. L., Connolly, R. M. & Brown, C. J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. https://doi.org/10.1016/j.ocecoaman.2019.104946 (2020).
Google Scholar
Unsworth, R. K. F. et al. Global challenges for seagrass conservation. Ambio 48, 801–815. https://doi.org/10.1007/s13280-018-1115-y (2019).
Google Scholar
Grech, A. et al. Predicting the cumulative effect of multiple disturbances on seagrass connectivity. Glob. Change Biol. 24, 3093–3104. https://doi.org/10.1111/gcb.14127 (2018).
Google Scholar
Fernandes, L. et al. A process to design a network of marine no-take areas: Lessons from the Great Barrier Reef. Ocean Coast. Manag. 52, 439–447. https://doi.org/10.1016/j.ocecoaman.2009.06.004 (2009).
Google Scholar
Bainbridge, Z. et al. Fine sediment and particulate organic matter: A review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Mar. Pollut. Bull. 135, 1205–1220. https://doi.org/10.1016/j.marpolbul.2018.08.002 (2018).
Google Scholar
Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 4458. https://doi.org/10.1038/s41598-017-04421-1 (2017).
Google Scholar
Rasheed, M. A., McKenna, S. A., Carter, A. B. & Coles, R. G. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 83, 491–499. https://doi.org/10.1016/j.marpolbul.2014.02.013 (2014).
Google Scholar
Collier, C. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490. https://doi.org/10.1016/j.marpolbul.2014.03.050 (2014).
Google Scholar
Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Modell. Softw. https://doi.org/10.1016/j.envsoft.2020.104717 (2020).
Google Scholar
Taylor, H. A. & Rasheed, M. A. Impacts of a fuel oil spill on seagrass meadows in a subtropical port, Gladstone, Australia—The value of long-term marine habitat monitoring in high risk areas. Mar. Pollut. Bull. 63, 431–437. https://doi.org/10.1016/j.marpolbul.2011.04.039 (2011).
Google Scholar
Fraser, M. W. et al. Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecol. Ind. 78, 229–242. https://doi.org/10.1016/j.ecolind.2017.03.026 (2017).
Google Scholar
Wolanski, E. Physical Oceanographic Processes of the Great Barrier Reef (CRC Press, 1994).
Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge University Press, 2007).
Google Scholar
Hopley, D. The Queensland coastline: attributes and issues. in Queensland: A Geographical Interpretation (ed J. H. Holmes) 73–94 (Booralong Publications, 1986).
McKenzie, L. J. et al. Marine Monitoring Program: Annual report for inshore seagrass monitoring 2017–2018. http://hdl.handle.net/11017/3488 (Great Barrier Reef Marine Park Authority, 2019). (Accessed 23 December 2020).
Van De Wetering, C., Reason, C., Rasheed, M., Wilkinson, J. & York, P. Port of Abbot Point Long-Term Seagrass Monitoring Program—2019 Vol. 53 (James Cook University, 2020).
Van De Wetering, C., Carter, A. & Rasheed, M. Seagrass Habitat of Mourilyan Harbour: Annual Monitoring Report—2019 Vol. 51 (James Cook University, 2020).
McKenna, S. et al. Port of Townsville Seagrass Monitoring Program: 2019 (James Cook University, 2020).
York, P. & Rasheed, M. Annual Seagrass Monitoring in the Mackay-Hay Point Region—2019 Vol. 51 (James Cook University, 2020).
Reason, C., McKenna, S. & Rasheed, M. Seagrass Habitat of Cairns Harbour and Trinity Inlet: Cairns Shipping Development Program and Annual Monitoring Report 2019 Vol. 54 (James Cook University, 2020).
Smith, T., Chartrand, K., Wells, J., Carter, A. & Rasheed, M. Seagrasses in Port Curtis and Rodds Bay 2019 Annual Long-Term Monitoring and Whole Port Survey Vol. 71 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/02, James Cook University, 2020).
Chartrand, K. M., Szabó, M., Sinutok, S., Rasheed, M. A. & Ralph, P. J. Living at the margins: The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts. Mar. Environ. Res. 136, 126–138. https://doi.org/10.1016/j.marenvres.2018.02.006 (2018).
Google Scholar
Dyall, A. et al. Queensland Coastal Waterways Geomorphic Habitat Mapping, Version 2 (1:100 000 scale digital data). http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a05f7892-c344-7506-e044-00144fdd4fa6 (2004). (Accessed 05 October 2020).
Heap, A. D. & Harris, P. T. Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 55, 555–585. https://doi.org/10.1080/08120090801888669 (2008).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).
Google Scholar
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
plotmo: Plot a Model’s Residuals, Response, and Partial Dependence Plots. R package version 3.5.7 (2020).
caret: Classification and Regression Training. R package version 6.0-86 (2020).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evolut. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).
Google Scholar
raster: Geographic Data Analysis and Modeling. R package version 3.3-13 (2020).
Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
Google Scholar
De’ath, G. Multivariate partitioning. The mvpart Package version 1.1-1. Archive form on CRAN, https://cran.r-project.org. (2004).
De’ath, G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83, 1105–1117 (2002).
Source: Ecology - nature.com