in

A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area

  • 1.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Wilson, K. A. et al. Conserving biodiversity efficiently: What to do, where, and when. PLoS Biol. 5, 1850–1861. https://doi.org/10.1371/journal.pbio.0050223 (2007).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Carr, M. H. et al. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves. Ecol. Appl. 13, 90–107. https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2 (2003).

    Article 

    Google Scholar 

  • 4.

    Coles, R. G. et al. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuar. Coast. Shelf Sci. 153, A1–A12. https://doi.org/10.1016/j.ecss.2014.07.020 (2015).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Beger, M. et al. Incorporating asymmetric connectivity into spatial decision making for conservation. Conserv. Lett. 3, 359–368. https://doi.org/10.1111/j.1755-263X.2010.00123.x (2010).

    Article 

    Google Scholar 

  • 6.

    Brodie, J. & Waterhouse, J. A critical review of environmental management of the ‘not so Great’ Barrier Reef. Estuar. Coast. Shelf Sci. 104, 1–22. https://doi.org/10.1016/j.ecss.2012.03.012 (2012).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Collier, C. J. et al. An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay. Environ. Sustain. Indicators 7, 100042. https://doi.org/10.1016/j.ecolind.2012.04.005 (2020).

    Article 

    Google Scholar 

  • 8.

    Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan. http://www.environment.gov.au/system/files/resources/d98b3e53-146b-4b9c-a84a-2a22454b9a83/files/reef-2050-long-term-sustainability-plan.pdf (2015). (Accessed 09 June 2021).

  • 9.

    Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan—July 2018. https://www.environment.gov.au/system/files/resources/35e55187-b76e-4aaf-a2fa-376a65c89810/files/reef-2050-long-term-sustainability-plan-2018.pdf (2018). (Accessed 09 June 2021).

  • 10.

    Tulloch, V. J. et al. Linking threat maps with management to guide conservation investment. Biol. Cons. 245, 108527. https://doi.org/10.1016/j.biocon.2020.108527 (2020).

    Article 

    Google Scholar 

  • 11.

    Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Mapp. Seafloor Habitat Characterization Geol. Assoc. Canada Special Paper 47, 145–159 (2007).

    Google Scholar 

  • 12.

    Grech, A. et al. Spatial patterns of seagrass dispersal and settlement. Divers. Distrib. 22, 1150–1162. https://doi.org/10.1111/ddi.12479 (2016).

    Article 

    Google Scholar 

  • 13.

    Young, M. & Carr, M. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring. PLoS ONE 10, e0116200. https://doi.org/10.1371/journal.pone.0116200 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Foley, M. M. et al. Guiding ecological principles for marine spatial planning. Mar. Policy 34, 955–966. https://doi.org/10.1016/j.marpol.2010.02.001 (2010).

    Article 

    Google Scholar 

  • 15.

    Diggon, S. et al. The marine plan partnership: Indigenous community-based marine spatial planning. Mar. Policy. https://doi.org/10.1016/j.marpol.2019.04.014 (2019).

    Article 

    Google Scholar 

  • 16.

    Kenchington, R. & Day, J. Zoning, a fundamental cornerstone of effective Marine Spatial Planning: Lessons learnt from the Great Barrier Reef, Australia. J. Coast. Conserv. 15, 271–278. https://doi.org/10.1007/s11852-011-0147-2 (2011).

    Article 

    Google Scholar 

  • 17.

    Noble, M. M., Harasti, D., Pittock, J. & Doran, B. Understanding the spatial diversity of social uses, dynamics, and conflicts in marine spatial planning. J. Environ. Manage. 246, 929–940. https://doi.org/10.1016/j.jenvman.2019.06.048 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Cons. 226, 120–126. https://doi.org/10.1016/j.biocon.2018.07.009 (2018).

    Article 

    Google Scholar 

  • 19.

    den Hartog, C. & Kuo, J. Seagrasses: Biology, Ecology and Conservation Ch. 1 1–23 (Springer Netherlands, 2006).

    Google Scholar 

  • 20.

    Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).

    Google Scholar 

  • 21.

    Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Cons. 144, 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010 (2011).

    Article 

    Google Scholar 

  • 22.

    Coles, R., McKenzie, L., De’ath, G., Roelofs, A. & Long, W. L. Spatial distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World Heritage Area. Mar. Ecol. Prog. Ser. 392, 57–68. https://doi.org/10.3354/meps08197 (2009).

    ADS 
    Article 

    Google Scholar 

  • 23.

    McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041. https://doi.org/10.1088/1748-9326/ab7d06 (2020).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000).

    Book 

    Google Scholar 

  • 25.

    Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733. https://doi.org/10.1126/science.aal1956 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Coles, R. G., Lee Long, W. J., Watson, R. A. & Derbyshire, K. J. Distribution of seagrasses, and their fish and penaeid prawn communities, in Cairns Harbour, a tropical estuary, Northern Queensland, Australia. Mar. Freshw. Res. 44, 193–210. https://doi.org/10.1071/MF9930193 (1993).

    Article 

    Google Scholar 

  • 27.

    de los Santos, C. B. et al. Seagrass ecosystem services: Assessment and scale of benefits. Out Blue Value Seagrasses Environ. People. 19–21 (2020).

  • 28.

    Marsh, H., O’Shea, T. J. & Reynolds, J. E. III. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).

    Book 

    Google Scholar 

  • 29.

    Scott, A. L. et al. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Front. Plant Sci. 9, 1–10. https://doi.org/10.3389/fpls.2018.00127 (2018).

    Article 

    Google Scholar 

  • 30.

    Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509. https://doi.org/10.1038/ngeo1477 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Carter, A., Taylor, H. & Rasheed, M. Torres Strait Mapping: Seagrass Consolidation, 2002–2014 Vol. 47 (James Cook University, 2014).

    Google Scholar 

  • 32.

    Lee Long, W. J., Mellors, J. E. & Coles, R. G. Seagrasses between Cape York and Hervey Bay, Queensland, Australia. Austr. J. Mar. Freshw. Res. 44, 19–32. https://doi.org/10.1071/MF9930019 (1993).

    Article 

    Google Scholar 

  • 33.

    Maxwell, P. et al. Seagrasses of Moreton Bay Quandamooka: Diversity, ecology and resilience. in Moreton Bay Quandamooka & Catchment: Past, Present, and Future (eds I. R. Tibbetts et al.) 279–298 (Moreton Bay Foundation Ltd, 2019).

  • 34.

    Lambert, V. M. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2021.112494 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    McKenna, S. A. et al. Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J. Biosci. 40, 389–398. https://doi.org/10.1007/s12038-015-9516-6 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Collier, C. J., Waycott, M. & McKenzie, L. J. Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol. Indicators 23, 211–219. https://doi.org/10.1016/j.ecolind.2012.04.005 (2012).

    Article 

    Google Scholar 

  • 37.

    York, P. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: Annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167. https://doi.org/10.1038/srep13167 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Grech, A., Coles, R. & Marsh, H. A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Mar. Policy 35, 560–567. https://doi.org/10.1016/j.marpol.2011.03.003 (2011).

    Article 

    Google Scholar 

  • 39.

    Brodie, J. & Pearson, R. G. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence. Estuar. Coast. Shelf Sci. 183, 438–451. https://doi.org/10.1016/j.ecss.2016.05.008 (2016).

    ADS 
    Article 

    Google Scholar 

  • 40.

    York, P. H. et al. Identifying knowledge gaps in seagrass research and management: An Australian perspective. Mar. Environ. Res. 127, 163–172. https://doi.org/10.1016/j.marenvres.2016.06.006 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Carruthers, T. J. B. et al. Seagrass habitats of Northeast Australia: Models of key processes and controls. Bull. Mar. Sci. 71, 1153–1153 (2002).

    Google Scholar 

  • 42.

    Waycott, M., Longstaff, B. J. & Mellors, J. Seagrass population dynamics and water quality in the Great Barrier Reef region: A review and future research directions. Mar. Pollut. Bull. 51, 343–350. https://doi.org/10.1016/j.marpolbul.2005.01.017 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Grech, A. & Coles, R. G. An ecosystem-scale predictive model of coastal seagrass distribution. Aquat. Conserv.-Mar. Freshw. Ecosyst. 20, 437–444. https://doi.org/10.1002/aqc.1107 (2010).

    Article 

    Google Scholar 

  • 44.

    Carter, A. et al. Synthesizing 35 years of seagrass spatial data from the Great Barrier Reef World Heritage Area, Queensland, Australia. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10193 (2021).

    Article 

    Google Scholar 

  • 45.

    Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30 m. Dataset. http://pid.geoscience.gov.au/dataset/115066 (2017). (Accessed 10 March 2020).

  • 46.

    Bishop-Taylor, R., Sagar, S., Lymburner, L. & Beaman, R. Between the tides: Modelling the elevation of Australia’s exposed intertidal zone at continental scale. Estuar. Coast. Shelf Sci. 223, 115–128. https://doi.org/10.1016/j.ecss.2019.03.006 (2019).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Geoscience Australia. Intertidal Extents Model 25m. v. 2.0.0. Dataset. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search?node=srv#/metadata/7d6f3432-5f93-45ee-8d6c-14b26740048a (2017). (Accessed 10 March 2021).

  • 48.

    Steven, A. D. et al. eReefs: An operational information system for managing the Great Barrier Reef. J. Operat. Oceanogr. 12, S12–S28. https://doi.org/10.1080/1755876X.2019.1650589 (2019).

    Article 

    Google Scholar 

  • 49.

    Baird, M. E. et al. CSIRO environmental modelling suite (EMS): Scientific description of the optical and biogeochemical models (vB3p0). Geosci. Model Dev. 13, 4503–4553. https://doi.org/10.5194/gmd-13-4503-2020 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Baird, M. E. et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data. Environ. Model. Softw. 78, 79–96. https://doi.org/10.1016/j.envsoft.2015.11.025 (2016).

    Article 

    Google Scholar 

  • 51.

    Margvelashvili, N. et al. Simulated fate of catchment-derived sediment on the Great Barrier Reef shelf. Mar. Pollut. Bull. 135, 954–962. https://doi.org/10.1016/j.marpolbul.2018.08.018 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Griffiths, L. L., Connolly, R. M. & Brown, C. J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. https://doi.org/10.1016/j.ocecoaman.2019.104946 (2020).

    Article 

    Google Scholar 

  • 53.

    Unsworth, R. K. F. et al. Global challenges for seagrass conservation. Ambio 48, 801–815. https://doi.org/10.1007/s13280-018-1115-y (2019).

    Article 
    PubMed 

    Google Scholar 

  • 54.

    Grech, A. et al. Predicting the cumulative effect of multiple disturbances on seagrass connectivity. Glob. Change Biol. 24, 3093–3104. https://doi.org/10.1111/gcb.14127 (2018).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Fernandes, L. et al. A process to design a network of marine no-take areas: Lessons from the Great Barrier Reef. Ocean Coast. Manag. 52, 439–447. https://doi.org/10.1016/j.ocecoaman.2009.06.004 (2009).

    Article 

    Google Scholar 

  • 56.

    Bainbridge, Z. et al. Fine sediment and particulate organic matter: A review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Mar. Pollut. Bull. 135, 1205–1220. https://doi.org/10.1016/j.marpolbul.2018.08.002 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 4458. https://doi.org/10.1038/s41598-017-04421-1 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Rasheed, M. A., McKenna, S. A., Carter, A. B. & Coles, R. G. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 83, 491–499. https://doi.org/10.1016/j.marpolbul.2014.02.013 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Collier, C. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490. https://doi.org/10.1016/j.marpolbul.2014.03.050 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Modell. Softw. https://doi.org/10.1016/j.envsoft.2020.104717 (2020).

    Article 

    Google Scholar 

  • 61.

    Taylor, H. A. & Rasheed, M. A. Impacts of a fuel oil spill on seagrass meadows in a subtropical port, Gladstone, Australia—The value of long-term marine habitat monitoring in high risk areas. Mar. Pollut. Bull. 63, 431–437. https://doi.org/10.1016/j.marpolbul.2011.04.039 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Fraser, M. W. et al. Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecol. Ind. 78, 229–242. https://doi.org/10.1016/j.ecolind.2017.03.026 (2017).

    Article 

    Google Scholar 

  • 63.

    Wolanski, E. Physical Oceanographic Processes of the Great Barrier Reef (CRC Press, 1994).

    Google Scholar 

  • 64.

    Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge University Press, 2007).

    Book 

    Google Scholar 

  • 65.

    Hopley, D. The Queensland coastline: attributes and issues. in Queensland: A Geographical Interpretation (ed J. H. Holmes) 73–94 (Booralong Publications, 1986).

  • 66.

    McKenzie, L. J. et al. Marine Monitoring Program: Annual report for inshore seagrass monitoring 2017–2018. http://hdl.handle.net/11017/3488 (Great Barrier Reef Marine Park Authority, 2019). (Accessed 23 December 2020).

  • 67.

    Van De Wetering, C., Reason, C., Rasheed, M., Wilkinson, J. & York, P. Port of Abbot Point Long-Term Seagrass Monitoring Program—2019 Vol. 53 (James Cook University, 2020).

    Google Scholar 

  • 68.

    Van De Wetering, C., Carter, A. & Rasheed, M. Seagrass Habitat of Mourilyan Harbour: Annual Monitoring Report—2019 Vol. 51 (James Cook University, 2020).

    Google Scholar 

  • 69.

    McKenna, S. et al. Port of Townsville Seagrass Monitoring Program: 2019 (James Cook University, 2020).

    Google Scholar 

  • 70.

    York, P. & Rasheed, M. Annual Seagrass Monitoring in the Mackay-Hay Point Region—2019 Vol. 51 (James Cook University, 2020).

    Google Scholar 

  • 71.

    Reason, C., McKenna, S. & Rasheed, M. Seagrass Habitat of Cairns Harbour and Trinity Inlet: Cairns Shipping Development Program and Annual Monitoring Report 2019 Vol. 54 (James Cook University, 2020).

    Google Scholar 

  • 72.

    Smith, T., Chartrand, K., Wells, J., Carter, A. & Rasheed, M. Seagrasses in Port Curtis and Rodds Bay 2019 Annual Long-Term Monitoring and Whole Port Survey Vol. 71 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/02, James Cook University, 2020).

    Google Scholar 

  • 73.

    Chartrand, K. M., Szabó, M., Sinutok, S., Rasheed, M. A. & Ralph, P. J. Living at the margins: The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts. Mar. Environ. Res. 136, 126–138. https://doi.org/10.1016/j.marenvres.2018.02.006 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 74.

    Dyall, A. et al. Queensland Coastal Waterways Geomorphic Habitat Mapping, Version 2 (1:100 000 scale digital data). http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a05f7892-c344-7506-e044-00144fdd4fa6 (2004). (Accessed 05 October 2020).

  • 75.

    Heap, A. D. & Harris, P. T. Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 55, 555–585. https://doi.org/10.1080/08120090801888669 (2008).

    ADS 
    Article 

    Google Scholar 

  • 76.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article 
    MATH 

    Google Scholar 

  • 77.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 78.

    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

  • 79.

    plotmo: Plot a Model’s Residuals, Response, and Partial Dependence Plots. R package version 3.5.7 (2020).

  • 80.

    caret: Classification and Regression Training. R package version 6.0-86 (2020).

  • 81.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evolut. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).

    Article 

    Google Scholar 

  • 82.

    raster: Geographic Data Analysis and Modeling. R package version 3.3-13 (2020).

  • 83.

    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  • 84.

    De’ath, G. Multivariate partitioning. The mvpart Package version 1.1-1. Archive form on CRAN, https://cran.r-project.org. (2004).

  • 85.

    De’ath, G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83, 1105–1117 (2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean

    Field metabolic rates of giant pandas reveal energetic adaptations