Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. Mol. Mech. Mutagen. 1, 2–9 (1964).
Maynard Smith, J. The Evolution of Sex (Cambridge University Press, 1978).
Avise, J. C. Clonality (Oxford University Press, 2008).
Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (A review). Proc. Natl. Acad. Sci. USA 87, 3566–3573 (1990).
Google Scholar
Lynch, M. & Gabriel, W. Mutation load and the survival of small populations. Evolution 44, 1725 (1990).
Google Scholar
Schurko, A. M., Neiman, M. & Logsdon, J. M. Signs of sex: what we know and how we know it. Trends Ecol. Evol. 24, 208–217 (2009).
Google Scholar
Verduijn, M. H., Van Dijk, P. J. & Van Damme, J. M. M. The role of tetraploids in the sexual-asexual cycle in dandelions (Taraxacum). Heredity 93, 390–398 (2004).
Google Scholar
D’Souza, T. G., Storhas, M., Schulenburg, H., Beukeboom, L. W. & Michiels, N. K. Occasional sex in an ‘asexual’ polyploid hermaphrodite. Proc. R. Soc. B Biol. Sci. 271, 1001–1007 (2004).
Schartl, M. et al. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 373, 68–71 (1995).
Google Scholar
Bogart, J. P., Bi, K., Fu, J., Noble, D. W. A. & Niedzwiecki, J. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50, 119–136 (2007).
Google Scholar
Hedtke, S. M., Glaubrecht, M. & Hillis, D. M. Rare gene capture in predominantly androgenetic species. Proc. Natl. Acad. Sci. USA 108, 9520–9524 (2011).
Google Scholar
Warren, W. C. et al. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0473-y (2018).
Google Scholar
Flot, J. F. et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500, 453–457 (2013).
Google Scholar
Dawley, R. M. & Bogart, J. P. Evolution and Ecology of Unisexual Vertebrates. (Albany, University of the State of New York, State Education Department, New York State Museum, 1989).
Avise, J. C. Evolutionary perspectives on clonal reproduction in vertebrate animals. Proc. Natl. Acad. Sci. USA 112, 8867–8873 (2015).
Google Scholar
Stöck, M. et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: Along the ‘extended speciation continuum’. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200103 (2021).
Fujita, M. K., Singhal, S., Brunes, T. O. & Maldonado, J. A. Evolutionary Dynamics and Consequences of Parthenogenesis in Vertebrates. Annu. Rev. Ecol. Evol. Syst. 51, 191–214 (2020).
Lehtonen, J., Schmidt, D. J., Heubel, K. & Kokko, H. Evolutionary and ecological implications of sexual parasitism. Trends Ecol. Evol. 28, 297–306 (2013).
Google Scholar
Hosoya, K. Fishes of Japan with pictorial keys to the species, English edn. in (ed. Nakabo, T.) 308–309, 1813–1814 (Tokai University Press, 2013).
Kobayashi, H., Kawashima, J. & Takeuchi, N. Comparative chromosome studies in the genus Carassius expecially with a finding of polyploidy in the ginbuna (C. auratus langsdorfi). Jpn. J. Ichthyol. 17, 153–160 (1970).
Shimizu, Y., Oshiro, T. & Sakaizumi, M. Electrophoretic studies of diploid, triploid, and tetraploid forms of the Japanese silver crucian carp, Carassius auratus langsdorfii. Jpn. J. Ichthyol. 40, 65–75 (1993).
Eschmeyer, W. N., Fricke, R. & van der Laan, R. Catalog of Fishes: Genera, Species, References. (2017). http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
Mishina, T. et al. Molecular identification of species and ploidy of Carassius fishes in Lake Biwa, using mtDNA and microsatellite multiplex PCRs. Ichthyol. Res. 61, 169–175 (2014).
Iguchi, K., Yamamoto, G., Matsubara, N. & Nishida, M. Morphological and genetic analysis of fish of a Carassius complex (Cyprinidae) in Lake Kasumigaura with reference to the taxonomic status of two all-female triploid morphs. Biol. J. Linn. Soc. 79, 351–357 (2003).
Ohara, K., Ariyoshi, T., Sumida, E. & Taniguchi, N. Clonal diversity in the Japanese silver crucian carp, Carassius langsdorfii inferred from genetic markers. Zoolog. Sci. 20, 797–804 (2003).
Google Scholar
Takada, M. et al. Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol. Biol. 10, 7 (2010).
Google Scholar
Luo, J. et al. Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae). Heredity 112, 415–427 (2014).
Google Scholar
Murakami, M., Matsuba, C. & Fujitani, H. Characterization of DNA markers isolated from the gynogenetic triploid ginbuna (Carassius auratus langsdorfi) by representational difference analysis. Aquaculture 208, 59–68 (2002).
Google Scholar
Cao, L. et al. Evolutionary dynamics of 18S and 5S rDNA in autotriploid Carassius auratus. Gene 737, 144433 (2020).
Google Scholar
Yahara, T. Evolution of agamospermous races in Boehmeria and Eupatorium. Plant Species Biol. 5, 183–196 (1990).
Li, C., Ortí, G., Zhang, G. & Lu, G. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 7, 44 (2007).
Google Scholar
Yue, G. H. & Orban, L. Polymorphic microsatellites from silver crucian carp (Carassius auratus gibelio Bloch) and cross-amplification in common carp (Cyprinus carpio L.). Mol. Ecol. Notes 2, 534–536 (2002).
Google Scholar
Takeshima, H. et al. Rapid and effective isolation of candidate sequences for development of microsatellite markers in 30 fish species by using kit-based target capture and multiplexed parallel sequencing. Conserv. Genet. Resour. 9, 479–490 (2017).
Gao, Y. et al. Quaternary palaeoenvironmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae). J. Biogeogr. 39, 2264–2278 (2012).
Konishi, S. & Yoshikawa, S. Immigration times of the two proboscidean species, Stegodon orientalis and Palaeoloxodon naumanni, into the Japanese Islands and the formation of land bridge. Earth Sci. (Chikyu Kagaku) 53, 125–134 (1999).
Kitamura, A., Takano, O., Takata, H. & Omote, H. Late pliocene-early pleistocene paleoceanographic evolution of the Sea of Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 81–98 (2001).
Dong, J., Murakami, M., Fujimoto, T., Yamaha, E. & Arai, K. Genetic characterization of the progeny of a pair of the tetraploid silver crucian carp Carassius auratus langsdorfii. Fish. Sci. 79, 935–941 (2013).
Google Scholar
Murakami, M. & Fujitani, H. Polyploid-specific repetitive DNA sequences from triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi). Genes Genet. Syst. 72, 107–113 (1997).
Google Scholar
Mada, Y., Miyagawa, M., Hayashi, T., Umino, T. & Arai, K. Production of tetraploids by introduction of sperm nucleus into the eggs of gynogenetic triploid ginbuna Carasius langsdorfii. Aquac. Sci. 49, 103–112 (2001).
Google Scholar
Alves, M. J., Coelho, M. M. & Collares-Pereira, M. J. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: A genetic review. Genetica 111, 375–385 (2001).
Google Scholar
Collares-Pereira, M. J., Matos, I., Morgado-Santos, M. & Coelho, M. M. Natural pathways towards polyploidy in animals: The Squalius alburnoides fish complex as a model system to study genome size and genome reorganization in polyploids. Cytogenet. Genome Res. 140, 97–116 (2013).
Google Scholar
Lafond, J., Hénault, P., Leung, C. & Angers, B. Unexpected oogenic pathways for the triploid fish chrosomus eos-neogaeus. J. Hered. 110, 370–377 (2019).
Google Scholar
Gauze, G. F. The Struggle for Existence (The Williams & Wilkins Company, 1934).
Vrijenhoek, R. C. Ecological differentiation among clones: the frozen niche variation model. in Population Biology and Evolution (eds. Wöhrmann, K. & Loeschcke, V.) 217–231 (Springer Berlin Heidelberg, 1984).
Weeks, A. R. & Hoffmann, A. A. Frequency-dependent selection maintains clonal diversity in an asexual organism. Proc. Natl. Acad. Sci. USA 105, 17872–17877 (2008).
Vrijenhoek, R. C. Coexistence of clones in a heterogeneous environment. Science 199, 549–552 (1978).
Google Scholar
Dagan, Y., Liljeroos, K., Jokela, J. & Ben-Ami, F. Clonal diversity driven by parasitism in a freshwater snail. J. Evol. Biol. 26, 2509–2519 (2013).
Google Scholar
Otto, S. P. & Lenormand, T. Evolution of sex resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261 (2002).
Google Scholar
Yamashita, M., Jiang, J., Onozato, H., Nakanishi, T. & Nagahama, Y. A tripolar spindle formed at meiosis I assures the retention of the original ploidy in the gynogenetic triploid. Dev. Growth Differ. 35, 631–636 (1993).
Kobayasi, H. A cytological study on the maturation division in the oogenic process of the Triploid Ginbuna (Carassius auratus langsdorfii). Jpn. J. Ichthyol. 22, 234–240 (1976).
Yamashita, M., Onozato, H., Nakanishi, T. & Nagahama, Y. Breakdown of the sperm nuclear envelope is a prerequisite for male pronucleus formation: Direct evidence from the gynogenetic crucian carp Carassius auratus langsdorfii. Dev. Biol. 137, 155–160 (1990).
Google Scholar
Kobayasi, H. A cytological study on gynogenesis of the triploid ginbuna (Carassius auratus langsdorfii). Zool. Mag. 80, 316–322 (1971).
Lampert, K. P. & Schartl, M. A little bit is better than nothing: the incomplete parthenogenesis of salamanders, frogs and fish. BMC Biol. 8, 78 (2010).
Google Scholar
Lu, Y. et al. Fixation of allelic gene expression landscapes and expression bias pattern shape the transcriptome of the clonal Amazon molly. Genome Res. 31, 372–379 (2021).
Google Scholar
Science Council of Japan. Guidelines for Proper Conduct of Animal Experiments. (2006).
du Sert, N. P. et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, 1–12 (2020).
code by Richard A. Becker, O. S. & version by Ray Brownrigg., A. R. W. R. mapdata: Extra Map Databases. (2018).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013).
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
Google Scholar
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Google Scholar
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Google Scholar
Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods – A bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
Google Scholar
Buerkle, C. A. Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol. Ecol. Notes 5, 684–687 (2005).
Google Scholar
Gompert, Z. & Alex Buerkle, C. Introgress: A software package for mapping components of isolation in hybrids. Mol. Ecol. Resour. 10, 378–384 (2010).
Google Scholar
Liu, S. et al. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross. Proc. Natl. Acad. Sci. USA 113, 1327–1332 (2016).
Google Scholar
Li, C. Y. et al. The transcriptomes of the crucian carp complex (Carassius auratus) provide insights into the distinction between unisexual triploids and sexual diploids. Int. J. Mol. Sci. 15, 9386–9406 (2014).
Google Scholar
Chen, Z. et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci. Adv. 5, 1–13 (2019).
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Google Scholar
der Auwera, G. A. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. Genomics in the cloud: Using Docker, GATK, and WDL in Terra (O’Reilly Media, 2020).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Google Scholar
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 1–8 (2007).
Liu, H.-T. & Su, T.-T. Pliocene fishes from Yüshe Basin, Shansi. Vertebr. Palasiat. 6, 1–47 (1962).
Rüber, L., Kottelat, M., Tan, H. H., Ng, P. K. L. & Britz, R. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evol. Biol. 7, 1–10 (2007).
Tominaga, K., Nagata, N., Kitamura, J., Watanabe, K. & Sota, T. Phylogeography of the bitterling Tanakia lanceolata (Teleostei: Cyprinidae) in Japan inferred from mitochondrial cytochrome b gene sequences. Ichthyol. Res. 67, 105–116 (2020).
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).
Google Scholar
Ritchie, A. M., Lo, N. & Ho, S. Y. W. The impact of the tree prior on molecular dating of data sets containing a mixture of inter- and intraspecies sampling. Syst. Biol. 66, 413–425 (2017).
Google Scholar
Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).
Google Scholar
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. (2017).
Legendre, P. & Legendre, L. F. J. Numerical Ecology (Elsevier Science, 1998).
Google Scholar
Muggeo, V. M. R. segmented: An R package to fit regression models with broken-line relationships. R NEWS 8(1), 20–25 (2008).
Bruvo, R., Michiels, N. K., D’Souza, T. G. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106 (2004).
Google Scholar
Clark, L. V. & Jasieniuk, M. polysat: An R package for polyploid microsatellite analysis. Mol. Ecol. Resour. 11, 562–566 (2011).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Rolf, F. J. tpsDig, Digitize Landmarks and Outlines, Version 2.05. (Department of Ecology and Evolution, State University of New York at Stony Brook, 2006).
Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
Google Scholar
Source: Ecology - nature.com