in

Protect, manage and then restore lands for climate mitigation

  • 1.

    IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • 2.

    Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).

    CAS 

    Google Scholar 

  • 3.

    Carton, W., Lund, J. F. & Dooley, K. Undoing equivalence: rethinking carbon accounting for just carbon removal. Front. Clim. 3, 30 (2021).

    Google Scholar 

  • 4.

    Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    Google Scholar 

  • 5.

    Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).

    Google Scholar 

  • 6.

    Fargione, J. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Google Scholar 

  • 7.

    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).

    CAS 

    Google Scholar 

  • 8.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 

    Google Scholar 

  • 9.

    Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).

    Google Scholar 

  • 10.

    Gregorio, N. et al. in Enhancing Food Security Through Forest Landscape Restoration: Lessons from Burkina Faso, Brazil, Guatemala, Viet Nam, Ghana, Ethiopia and Philippines (eds Kumar, C. et al.) 174–217 (IUCN, 2015).

  • 11.

    Meyer, J. M. Gifford Pinchot, John Muir, and the boundaries of politics in American thought. Polity 30, 267–284 (1997).

    Google Scholar 

  • 12.

    Standard on Biodiversity Offsets (BBOP, 2012).

  • 13.

    Performance Standard 6: Biodiversity Conservation and Sustainable Management of Natural Resources (IFC, 2012).

  • 14.

    Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).

    Google Scholar 

  • 15.

    Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020).

  • 16.

    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B 375, 20190120 (2020).

    Google Scholar 

  • 17.

    Ellis, P. W. et al. Reduced-impact logging for climate change mitigation (RIL-C) can halve selective logging emissions from tropical forests. Ecol. Manag. 438, 255–266 (2019).

    Google Scholar 

  • 18.

    Martin, D. M. Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 25, 668–673 (2017).

    Google Scholar 

  • 19.

    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).

    Google Scholar 

  • 20.

    Supporting Canadians and Fighting COVID-19 (Department of Finance Canada, 2020).

  • 21.

    Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Google Scholar 

  • 22.

    Seddon, N. et al. Nature-Based Solutions in Nationally Determined Contributions: Synthesis and Recommendations for Enhancing Climate Ambition and Action by 2020 (IUCN, 2019).

  • 23.

    Carbon Removal Corporate Action Tracker (Institute for Carbon Removal Law and Policy, accessed 6 July 2021); https://research.american.edu/carbonremoval/2020/05/07/carbon-removal-corporate-action-tracker/

  • 24.

    Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Google Scholar 

  • 25.

    Goal 1 Assessment: Striving to End Natural Forest Loss (NYDF Progress Assessment Secretariat, 2020).

  • 26.

    Smith, B. One year later: The path to carbon negative—a progress report on our climate ‘moonshot’. Microsoft Blog (28 January 2021); https://blogs.microsoft.com/blog/2021/01/28/one-year-later-the-path-to-carbon-negative-a-progress-report-on-our-climate-moonshot/

  • 27.

    Ward, C. et al. Smallholder perceptions of land restoration activities: rewetting tropical peatland oil palm areas in Sumatra. Indonesia. Reg. Environ. Change 21, 1 (2020).

    Google Scholar 

  • 28.

    Jacobson, M. & Ham, C. The (un)broken promise of agroforestry: a case study of improved fallows in Zambia. Environ. Dev. Sustain. 22, 8247–8260 (2020).

    Google Scholar 

  • 29.

    West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci USA 117, 24188–24194 (2020).

    CAS 

    Google Scholar 

  • 30.

    Cook-Patton, S. C. et al. Lower cost and more feasible options to restore forest cover in the contiguous United States for climate mitigation. One Earth 3, 739–752 (2020).

    Google Scholar 

  • 31.

    Petersen, S. O., Højberg, O., Poulsen, M., Schwab, C. & Eriksen, J. Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. J. Appl. Microbiol. 117, 160–172 (2014).

    CAS 

    Google Scholar 

  • 32.

    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Google Scholar 

  • 33.

    Qin, Z. et al. Delayed impact of natural climate solutions. Glob. Change Biol. 27, 215–217 (2021).

    Google Scholar 

  • 34.

    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS 

    Google Scholar 

  • 35.

    Pagiola, S., Honey-Rosés, J. & Freire-González, J. Assessing the permanence of land-use change induced by payments for environmental services: evidence from Nicaragua. Trop. Conserv. Sci. https://doi.org/10.1177/1940082920922676 (2020).

  • 36.

    Tseng, T.-W. J. et al. Influence of land tenure interventions on human well-being and environmental outcomes. Nat. Sustain. 4, 242–251 (2021).

    Google Scholar 

  • 37.

    Smith, P. et al. Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations Sustainable Development Goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).

    Google Scholar 

  • 38.

    Nunez, S., Verboom, J. & Alkemade, R. Assessing land-based mitigation implications for biodiversity. Environ. Sci. Policy 106, 68–76 (2020).

    Google Scholar 

  • 39.

    Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Change Biol. 26, 6134–6155 (2020).

    Google Scholar 

  • 40.

    Infield, M., Entwistle, A., Anthem, H., Mugisha, A. & Phillips, K. Reflections on cultural values approaches to conservation: lessons from 20 years of implementation. Oryx 52, 220–230 (2018).

    Google Scholar 

  • 41.

    Rosenstock, T. S. et al. A planetary health perspective on agroforestry in sub-Saharan Africa. One Earth 1, 330–344 (2019).

    Google Scholar 

  • 42.

    Garrett, H. E. et al. Hardwood silvopasture management in North America. Agrofor. Syst. 61, 21–33 (2004).

    Google Scholar 

  • 43.

    Kroeger, T. et al. Returns on investment in watershed conservation: application of a best practices analytical framework to the Rio Camboriú Water Producer program, Santa Catarina, Brazil. Sci. Total Environ. 657, 1368–1381 (2019).

    CAS 

    Google Scholar 

  • 44.

    Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).

    CAS 

    Google Scholar 

  • 45.

    Ferreira, J. et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Change 8, 744–749 (2018).

    CAS 

    Google Scholar 

  • 46.

    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    CAS 

    Google Scholar 

  • 47.

    Wilson, S. J., Schelhas, J., Grau, R., Nanni, A. S. & Sloan, S. Forest ecosystem-service transitions: the ecological dimensions of the forest transition. Ecol. Soc. 22, 38 (2017).

    Google Scholar 

  • 48.

    Funk, J. M. et al. Securing the climate benefits of stable forests. Clim. Policy 19, 845–860 (2019).

    Google Scholar 

  • 49.

    Keith, H. et al. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341 (2021).

    CAS 

    Google Scholar 

  • 50.

    Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).

    Google Scholar 

  • 51.

    Hiraishi, T. et al. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (WMO, 2013).

  • 52.

    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    CAS 

    Google Scholar 

  • 53.

    Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020).

    CAS 

    Google Scholar 

  • 54.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    CAS 

    Google Scholar 

  • 55.

    Vargas Zeppetello, L. R. et al. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 15, 84012 (2020).

    Google Scholar 

  • 56.

    Spalding, M. D. et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).

    Google Scholar 

  • 57.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Google Scholar 

  • 58.

    Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  • 59.

    Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).

    CAS 

    Google Scholar 

  • 60.

    Streck, C. REDD+ and leakage: debunking myths and promoting integrated solutions. Clim. Policy 21, 843–852 (2021).

    Google Scholar 

  • 61.

    Brancalion, P. H. S. et al. The cost of restoring carbon stocks in Brazil’s Atlantic Forest. Land Degrad. Dev. 32, 830–841 (2021).

    Google Scholar 

  • 62.

    Bustamante-Sánchez, M. A. & Armesto, J. J. Seed limitation during early forest succession in a rural landscape on Chiloé Island, Chile: implications for temperate forest restoration. J. Appl. Ecol. 49, 1103–1112 (2012).

    Google Scholar 

  • 63.

    Koch, A., Brierley, C. & Lewis, S. L. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18, 2627–2647 (2021).

    CAS 

    Google Scholar 

  • 64.

    Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).

    CAS 

    Google Scholar 

  • 65.

    Johnson, K. A. et al. A benefit–cost analysis of floodplain land acquisition for US flood damage reduction. Nat. Sustain. 3, 56–62 (2020).

    Google Scholar 

  • 66.

    Nolte, C. High-resolution land value maps reveal underestimation of conservation costs in the United States. Proc. Natl Acad. Sci. USA 117, 29577–29583 (2020).

    CAS 

    Google Scholar 

  • 67.

    Reetz, H., Heffer, P. & Bruulsema, T. in Managing Water and Fertilizer for Sustainable Agricultural Intensification (eds Drechsel, P. et al.) 65–86 (IFA, IWMI, IPNI and IPI, 2015).

  • 68.

    Sharma, P. et al. The role of cover crops towards sustainable soil health and agriculture—a review paper. Am. J. Plant Sci. 09, 1935–1951 (2018).

    CAS 

    Google Scholar 

  • 69.

    Bergeron, M. et al. Reduced soil nutrient leaching following the establishment of tree-based intercropping systems in eastern Canada. Agrofor. Syst. 83, 321–330 (2011).

    Google Scholar 

  • 70.

    Moore, A. A. & Palmer, M. A. Invertebrate biodiveristy in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl. 15, 1169–1177 (2005).

    Google Scholar 

  • 71.

    Martin, M. P. et al. People plant trees for utility more often than for biodiversity or carbon. Biol. Conserv. 261, 109224 (2021).

    Google Scholar 

  • 72.

    Mendes, T. P., de Assis Montag, L. F., Alvarado, S. T. & Juen, L. Assessing habitat quality on alpha and beta diversity of Odonata larvae (Insect) in logging areas in Amazon forest. Hydrobiologia 848, 1147–1161 (2021).

    Google Scholar 

  • 73.

    Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

    Google Scholar 

  • 74.

    Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).

    Google Scholar 

  • 75.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • 76.

    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    Google Scholar 

  • 77.

    Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).

    Google Scholar 

  • 78.

    Xu, S., Liu, X., Li, X. & Tian, C. Soil organic carbon changes following wetland restoration: a global meta-analysis. Geoderma 353, 89–96 (2019).

    CAS 

    Google Scholar 

  • 79.

    Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    CAS 

    Google Scholar 

  • 80.

    Kroeger, T., McDonald, R. I., Boucher, T., Zhang, P. & Wang, L. Where the people are: current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 U.S. cities. Landsc. Urban Plan. 177, 277–240 (2018).

    Google Scholar 

  • 81.

    McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2020).

    Google Scholar 

  • 82.

    Heris, M. et al. Piloting urban ecosystem accounting for the United States. Ecosyst. Serv. 48, 101226 (2021).

    Google Scholar 

  • 83.

    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Google Scholar 

  • 84.

    Li, R. et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 7, eabf8650 (2021).

    Google Scholar 

  • 85.

    Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).

    Google Scholar 

  • 86.

    Griscom, B. W., Goodman, R. C., Burivalova, Z. & Putz, F. E. Carbon and biodiversity impacts of intensive versus extensive tropical forestry. Conserv. Lett. 11, e12362 (2018).

    Google Scholar 

  • 87.

    Gabon’s Proposed National RED+ Forest Reference Level (Gabonese Republic, 2021).

  • 88.

    Umunay, P., Gregoire, T., Gopalakrishna, T., Ellis, P. & Putz, F. Selective logging emissions and potential emission reductions from reduced-impact logging in the Congo Basin. Ecol. Manag. 437, 360–371 (2019).

    Google Scholar 

  • 89.

    Natural Climate Solutions World Atlas (Nature4Climate, accessed 9 December 2020); https://nature4climate.org/n4c-mapper/

  • 90.

    Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019); https://doi.org/10.2305/IUCN.CH.2019.06.en

  • 91.

    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    Google Scholar 

  • 92.

    Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).

    Google Scholar 

  • 93.

    Kronenberg, J. & Mieszkowicz, J. Planting trees for publicity—how much are they worth? Sustainability 3, 1022–1034 (2011).

    Google Scholar 

  • 94.

    Microsoft Carbon Removal: Lessons from an Early Corporate Purchase (Microsoft, 2021).

  • 95.

    Toor, I. A., Smith, E. G., Whalen, J. K. & Naseem, A. Tree-based intercropping in southern Ontario, Canada. Can. J. Agric. Econ. 60, 141–154 (2012).

    Google Scholar 

  • 96.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    CAS 

    Google Scholar 

  • 97.

    zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).

    Google Scholar 

  • 98.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).


  • Source: Ecology - nature.com

    At UN climate change conference, trying to “keep 1.5 alive”

    Direct and indirect effects of roads on space use by jaguars in Brazil