The State of Food Insecurity in the World—How Does International Price Volatility Affect Domestic Economies and Food Security? (FAO, 2011).
Catchpoole, D. W. & Blair, G. Forage tree legumes I. Productivity and N economy of leucaena, gliricidia, calliandra and sesbania and tree/green panic mixtures. Aust. J. Agric. Res 41, 521–530 (1990).
Google Scholar
Xu, Z. H., Saffigna, P. G., Myers, R. J. K. & Chapman, A. L. Nitrogen cycling in leucaena (Leucaena lecuocephala) alley cropping in semiarid tropics. 1. Mineralization of nitrogen from leucaena residues. Plant Soil 148, 63–72 (1993).
Google Scholar
Beer, J., Muschler, R., Kass, D. & Somarriba, E. Shade management in coffee and cacao plantations. Agrofor. Syst. 38, 139–164 (1998).
Google Scholar
Snoeck, D., Zapata, F. & Domenach, A.-M. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol. Agron. Soc. Environ. 4, 95–100 (2000).
Google Scholar
Sierra, J. & Nygren, P. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol. Biochem. 38, 1893–1903 (2006).
Google Scholar
He, X. H., Critchley, C. & Bledsoe, C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22, 531–567 (2003).
Google Scholar
Jalonen, R., Nygren, P. & Sierra, J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ. 32, 1366–1376 (2009).
Google Scholar
Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).
Google Scholar
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).
Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol. 164, 175–181 (2004).
Google Scholar
Newman, E. I. & Ritz, K. Evidence on the pathways of phosphorus transfer between vesicular–arbuscular mycorrhizal plants. New Phytol. 104, 77–87 (1986).
Google Scholar
Mikkelsen, B. L., Rosendahl, S. & Jakobsen, I. Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol. 4, 890–898 (2008).
Google Scholar
Saka, A. R., Bunderson, W. T., Itimu, O. A., Phombeya, H. S. K. & Mbekeani, Y. The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. For. Ecol. Manage. 64, 217–230 (1994).
Google Scholar
Rhoades, C. Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor. Syst. 29, 133–145 (1995).
Google Scholar
Sileshi, G. W. et al. in Encyclopedia of Agriculture and Food Systems (ed. van Alfen, N.) 222–234 (Elsevier, 2014).
Yengwe, J., Gebremikael, M. T., Buchan, D., Lungu, O. & De Neve, S. Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agrofor. Syst. 92, 349–363 (2018).
Yengwe, J., Amalia, O., Lungu, O. I. & De Neve, S. Quantifying nutrient deposition and yield levels of maize (Zea mays) under Faidherbia albida agroforestry system in Zambia. Eur. J. Agron. 99, 148–155 (2018).
Google Scholar
Sida, T. S., Baudron, F., Ndoli, A., Tirfessa, D. & Giller, K. E. Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant Soil 453, 173–188 (2020).
Google Scholar
Umar, B. B., Aune, J. B. & Lungu, O. I. Effects of Faidherbia albida on the fertility of soil in smallholder conservation agriculture systems in eastern and southern Zambia. Afr. J. Agric. Res. 8, 173–183 (2013).
Hadgu, K. M., Kooistra, L., Rossing, W. A. H. & van Bruggen, A. H. C. Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Security 1, 337–350 (2009).
Google Scholar
Dalpé, Y., Diop, T. A., Plenchette, C. & Gueye, M. Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10, 125–129 (2000).
Google Scholar
Boddey, R. M., Peoples, M. B., Palmer, B. & Dart, P. J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr. Cycl. Agroecosyst. 57, 235–270 (2000).
Google Scholar
Oberson, A. et al. Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290, 69–83 (2007).
Google Scholar
Snapp, S., Borden, H. & Rohrbach, D. Improving nitrogen efficiency: lessons from Malawi and Michigan. Sci. World 1, 42–48 (2001).
Akinnifesi, F. K., Wakumba, W. & Kwesiga, F. R. Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Exp. Agric. 42, 441–457 (2006).
Google Scholar
Tovihoudji, P. G., Irenikatché Akponikpè, P. B., Agbossou, E. K., Bertin, P. & Bielders, C. L. Fertilizer microdosing enhances maize yields but may exacerbate nutrient mining in maize cropping systems in northern Benin. Field Crops Res. 213, 130–142 (2017).
Google Scholar
Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).
Google Scholar
Bueno de Mesquita, C. P. et al. Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol. 36, 63–74 (2018).
Google Scholar
Alexandre, D. Y. & Ouedraogo, S. J. in Faidherbia albida in the West African Semi-arid Tropics: Proceedings of a Workshop (ed. Vandenbeldt, R. J.) 107–110 (International Centre for Research in Agroforestry, 1992).
Jones, A. et al. Soil Atlas of Africa (European Commission, 2013).
Dierks, J. et al. Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agric. Ecosyst. Environ. 318, 107487 (2021).
Google Scholar
Mungai, L. M. et al. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01720 (2016).
Smith, S. E. & Smith, F. A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250 (2011).
Google Scholar
Marschner, H. & Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89–102 (1994).
Google Scholar
Gryndler, M. et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450 (2018).
Google Scholar
Rillig, M. C. et al. Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308, 267–275 (2008).
Google Scholar
Koide, R. T. & Li, M. Appropriate controls for vesicular–arbuscular mycorrhiza research. New Phytol. 111, 35–44 (1989).
Google Scholar
Fitter, A. H. & Nichols, R. The use of benomyl to control infection by vesicular–arbuscular mycorrhizal fungi. New Phytol. 110, 201–206 (1988).
Google Scholar
Cavagnaro, T. R., Smith, F. A. & Smith, S. E. Interactions between arbuscular mycorrhizal fungi and a mycorrhiza-defective mutant tomato: does a noninfective fungus alter the ability of an infective fungus to colonise the roots—and vice versa? New Phytol. 164, 485–491 (2004).
Google Scholar
Carey, P. D., Fitter, A. H. & Watkinson, A. R. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90, 550–555 (1992).
Google Scholar
Merryweather, J. & Fitter, A. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol. 132, 307–311 (1996).
Google Scholar
Shinners, K. J. & Binversie, B. N. Fractional yield and moisture of corn stover biomass produced in northern US Corn Belt. Biomass Bioenergy 31, 576–584 (2007).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).
Source: Ecology - nature.com