in

Direct and indirect effects of roads on space use by jaguars in Brazil

  • 1.

    Hughes, A. C. et al. Horizon scan of the belt and road initiative. Trends Ecol. Evol. 35(7), 583–593. https://doi.org/10.1016/j.tree.2020.02.005 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13(6), 064006. https://doi.org/10.1088/1748-9326/aabd42 (2018).

    ADS 
    Article 

    Google Scholar 

  • 3.

    DNIT. Sistema de Gerencia de Pavimentos. Relatório dos levantamentos funcionais das rodovias federais. Departamento Nacional de Infraenstrutura de Transporte (2013). www.dnit.gov.br.

  • 4.

    Teixeira, F. et al. The need to improve and integrate science and environmental licensing to mitigate wildlife mortality on roads in Brazil. Trop. Conserv. Sci. 9, 24–42. https://doi.org/10.1177/194008291600900104 (2016).

    Article 

    Google Scholar 

  • 5.

    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209. https://doi.org/10.1016/j.biocon.2014.07.004 (2014).

    Article 

    Google Scholar 

  • 6.

    Reid, J. & Souza, W. C. Infrastructure and conservation policy in Brazil. Conserv. Biol. 19, 740–746. https://doi.org/10.1111/j.1523-1739.2005.00699.x (2005).

    Article 

    Google Scholar 

  • 7.

    Bowman, J., Ray, C. R., Magoun, A. J. & Johnson, D. F. N. Roads, logging, and the large-mammal community of an eastern Canadian boreal forest. Can. J. Zool. 88(5), 454–467. https://doi.org/10.1139/z10-019 (2010).

    Article 

    Google Scholar 

  • 8.

    Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14(1), 21 (2009).

    Article 

    Google Scholar 

  • 9.

    Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669. https://doi.org/10.1016/j.tree.2009.06.009 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 10.

    Ruiz-Capillas, P., Mata, C. & Malo, J. E. Road verges are refuges for small mammal populations in extensively managed Mediterranean landscapes. Biol. Conserv. 158, 223–229. https://doi.org/10.1016/j.biocon.2012.09.025 (2013).

    Article 

    Google Scholar 

  • 11.

    Grilo, C. et al. Individual spatial responses towards roads: Implications for mortality risk. PLoS ONE 7(9), e43811. https://doi.org/10.1371/journal.pone.0043811 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Jacobson, S. L., Bliss-Ketchum, L. L., de Rivera, C. E. & Smith, W. P. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7, e01345. https://doi.org/10.1002/ecs2.1345 (2016).

    Article 

    Google Scholar 

  • 13.

    Li, T. et al. Fragmentation of China’s landscape by roads and urban areas. Landsc. Ecol. 25, 839–853. https://doi.org/10.1007/s10980-010-9461-6 (2010).

    Article 

    Google Scholar 

  • 14.

    Walker, R. et al. Modeling spatial decisions with graph theory: Logging roads and forest fragmentation in the Brazilian Amazon. Ecol. Appl. 23, 239–254. https://doi.org/10.1890/11-1800.1 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).

    Article 

    Google Scholar 

  • 16.

    Püttker, T. et al. Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biol. Conserv. 241, 108368. https://doi.org/10.1016/j.biocon.2019.108368 (2020).

    Article 

    Google Scholar 

  • 17.

    Signorelli, L., Bastos, R. P., De Marco, P. & With, K. A. Landscape context affects site occupancy of pond-breeding anurans across a disturbance gradient in the Brazilian Cerrado. Landsc. Ecol. 31, 1997. https://doi.org/10.1007/s10980-016-0376-8 (2016).

    Article 

    Google Scholar 

  • 18.

    Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: Scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364. https://doi.org/10.1093/beheco/aru134 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Jaeger, J. A. G. et al. Predicting when animal populations are at risk from roads: An interactive model of road avoidance behaviour. Ecol. Model. 185, 329–348. https://doi.org/10.1016/j.ecolmodel.2004.12.015 (2005).

    Article 

    Google Scholar 

  • 20.

    Jaeger, J. A. G., Fahrig, L., Ewald, K. C. Does the configuration of road networks influence the degree to which roads affect wildlife populations? In Proceedings of the 2005 International Conference on Ecology and Transportation (ICOET) (eds Irwin, C. L., Garrett, P. & McDermott, K. P.) 151–163 (Center for Transportation and the Environment, North Carolina State University, Raleigh, NC, 2006).

  • 21.

    Rytwinski, T. & Fahrig, L. Reproductive rates and body size predict road impacts on mammal abundance. Ecol. Appl. 21(2), 589–600. https://doi.org/10.1890/10-0968.1 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Rytwinski, T. & Fahrig, L. Do species life history traits explain population responses to roads? A meta-analysis. Biol. Conserv. 147(1), 87–98. https://doi.org/10.1016/j.biocon.2011.11.023 (2012).

    Article 

    Google Scholar 

  • 23.

    Nowell, K. & Jackson, P. Wilds Cats: Status Survey e Conservation Action Plan (IUCN, 1996).

    Google Scholar 

  • 24.

    de La Torre, J., Zarza, H., Ceballos, G. & Medellin, R. The jaguars’ spots are darker than they appear: Assessing the global conservation status of the jaguar Panthera onca. Oryx 51, 1–16. https://doi.org/10.1017/S0030605316001046 (2017).

    Article 

    Google Scholar 

  • 25.

    Morrison, J. C., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. F. Persistence of large mammal faunas as indicators of global human impacts. J. Mammal. 88(6), 1363–1380. https://doi.org/10.1644/06-MAMM-A-124R2.1 (2007).

    Article 

    Google Scholar 

  • 26.

    Alvarenga, G. C. et al. Multi-scape path-level analysis of jaguar habitat use in the Pantanal ecosystem. Biol. Conserv. 253, 108900. https://doi.org/10.1016/j.biocon.2020.108900 (2021).

    Article 

    Google Scholar 

  • 27.

    Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13(1), e0189740. https://doi.org/10.1371/journal.pone.0189740 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Pallares, E., Manterolla, C., Conde, D. A. & Colchero, F. Case Study: roads and jaguars in the Mayan Forest. In Handbook of Road Ecology (eds Van der Ree, R. et al.) 313–136 (Wiley, 2015).

    Google Scholar 

  • 29.

    Zeilhofer, P., Cezar, A., Tôrres, N. M., Jácomo, A. T. A. & Silveira, L. Jaguar Panthera onca habitat modeling in landscapes facing high land-use transformation pressure—Findings from Mato Grosso, Brazil. Biotropica 46(1), 98–105. https://doi.org/10.1111/btp.12074 (2014).

    Article 

    Google Scholar 

  • 30.

    Colchero, F., Conde, D. A., Manterola, C., Rivera, A. & Ceballos, G. Jaguars on the move: Modeling movement to mitigate fragmentation from road expansion in the Mayan Forest. Anim. Conserv. 4, 158–166. https://doi.org/10.1111/j.1469-1795.2010.00406.x (2011).

    Article 

    Google Scholar 

  • 31.

    Conde, D. A. et al. Sex matters: Modeling male and female habitat differences for jaguar conservation. Biol. Conserv. 143(9), 1980–1988. https://doi.org/10.1016/j.biocon.2010.04.049 (2010).

    Article 

    Google Scholar 

  • 32.

    De Angelo, C., Paviolo, A., Wiegand, T., Kanagaraj, R. & Di Bitetti, M. S. Understanding species persistence for defining conservation actions: A management landscape for jaguars in the Atlantic Forest. Biol. Conserv. 159, 422–433. https://doi.org/10.1016/j.biocon.2012.12.021 (2013).

    Article 

    Google Scholar 

  • 33.

    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).

    Book 

    Google Scholar 

  • 34.

    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368. https://doi.org/10.1890/08-1034.1 (2009).

    Article 

    Google Scholar 

  • 35.

    Morato, R. G. et al. Jaguar movement database: A GPS-based movement dataset of an apex predator in the Neotropics. Ecology 99, 1691–1691. https://doi.org/10.1002/ecy.2379 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Geofabrik. OpenStreetMap-Shapefiles (2019). http://download.geofabrik.de. Accessed 15 Aug 2019.

  • 37.

    Projeto MapBiomas – Coleção 2 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil, acessado em 12/04/2019 através do link. http://mapbiomas.org/pages/database/mapbiomas_collection_download.

  • 38.

    Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240. https://doi.org/10.1016/j.biocon.2018.10.022 (2018).

    Article 

    Google Scholar 

  • 39.

    ESRI. Environmental Systems Research Institute. ArcGIS. Geographic Information System for Desktop, version 10.3.1 (2015).

  • 40.

    RStudio Team. RStudio: Integrated Development for R (RStudio Inc, 2016).

    Google Scholar 

  • 41.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).

    Article 

    Google Scholar 

  • 42.

    Grace, J. B., Adler, P. B., Harpole, W. S., Borer, E. T. & Seabloom, E. W. Causal networks clarify productivity–richness interrelations, bivariate plots do not. Funct. Ecol. 28, 787–798. https://doi.org/10.1111/1365-2435.12269 (2014).

    Article 

    Google Scholar 

  • 43.

    Bollen, K. A. & Pearl, J. Eight myths about causality and structural equation models. In Handbook of Causal Analysis for Social Research (ed. Morgan, S. L.) 301–328 (Springer, 2013).

    Chapter 

    Google Scholar 

  • 44.

    Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process 5, 19. https://doi.org/10.1186/s13717-016-0063-3 (2016).

    Article 

    Google Scholar 

  • 45.

    Cressie, N. A. C. Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics (Wiley, 1993).

    Google Scholar 

  • 46.

    Haining, R. Spatial Data Analysis: Theory and Practice (Cambridge University Press, 2003).

    Book 

    Google Scholar 

  • 47.

    Amrhein, V., Greenland, S. & McShane, B. Retire statistical significance. Nature 567(7748), 305–307. https://doi.org/10.1038/d41586-019-00857-9 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biol. Conserv. 143, 1307–1316. https://doi.org/10.1016/j.biocon.2010.02.009 (2010).

    Article 

    Google Scholar 

  • 49.

    Torres, A., Jaeger, J. A. & Alonso, J. C. Assessing large-scale wildlife responses to human infrastructure development. Proc. Natl. Acad. Sci. USA 113(30), 8472–8477. https://doi.org/10.1073/pnas.1522488113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Morato, R. G., Ferraz, K. M. P. M. B., Paula, R. C. & Campos, C. B. Identification of priority conservation areas and potential corridors for jaguars in the Caatinga biome, Brazil. PLoS ONE 9(4), e92950. https://doi.org/10.1371/journal.pone.0092950 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Rodríguez-Soto, C. et al. Predicting potential distribution of the jaguar (Panthera onca) in Mexico: Identification of priority areas for conservation. Divers. Distrib. 17, 350–361. https://doi.org/10.1111/j.1472-4642.2010.00740.x (2011).

    Article 

    Google Scholar 

  • 52.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343(6167), 1241484. https://doi.org/10.1126/science.1241484 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Rabinowitz, A. & Zeller, K. A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 143(4), 939–945. https://doi.org/10.1016/j.biocon.2010.01.002 (2010).

    Article 

    Google Scholar 

  • 54.

    Jaeger, J. Landschaftszerschneidung. Eine transdisziplinäre Studie gemäß dem Konzept der Umweltgefährdung (Landscape Fragmentation. A Transdisciplinary Study According to the Concept of Environmental Threat) (Eugen Ulmer, 2002).

    Google Scholar 

  • 55.

    Torres, A., Jaeger, J. A. G. & Alonso, J. C. Multi-scale mismatches between urban sprawl and landscape fragmentation create windows of opportunity for conservation development. Landsc. Ecol. 31, 2291–2305. https://doi.org/10.1007/s10980-016-0400-z (2016).

    Article 

    Google Scholar 

  • 56.

    Morato, R. G. et al. space use and movement of a neotropical top predator: The endangered jaguar. PLoS ONE 11(12), e0168176. https://doi.org/10.1371/journal.pone.0168176 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movement using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 144, 1017–1024. https://doi.org/10.1016/j.biocon.2010.12.011 (2011).

    Article 

    Google Scholar 

  • 58.

    Marchini, S. & Macdonald, D. W. Mind over matter: Perceptions behind the impact of jaguars on human livelihoods. Biol. Conserv. 224, 230–237. https://doi.org/10.1016/j.biocon.2018.06.001 (2018).

    Article 

    Google Scholar 

  • 59.

    González-Gallina, A. et al. Home range of a male jaguar spatially associated with the landfill of the city of Playa del Carmen, Mexico. Mammalia 82(1), 54–61. https://doi.org/10.1515/mammalia-2016-0065 (2017).

    Article 

    Google Scholar 

  • 60.

    Associação Onçafari. Enteda o caso da onça-pintada de Juiz de Fora (2019). https://oncafari.org/2019/06/03/entenda-o-caso-da-onca-pintada-de-juiz-de-fora/. Accessed 09 Oct 2020.

  • 61.

    Dickson, B. G., Jenness, J. S. & Beier, P. Influence of vegetation, topography, and roads on cougar movement in southern California. J. Wildl. Manag. 69, 264–276. https://doi.org/10.2193/0022-541X(2005)069%3c0264:IOVTAR%3e2.0.CO;2 (2005).

    Article 

    Google Scholar 

  • 62.

    Thatte, P., Joshi, A., Vaidyanathan, S., Landguth, E. & Ramakrishnan, U. Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biol. Conserv. 218, 181–191. https://doi.org/10.1016/j.biocon.2017.12.022 (2018).

    Article 

    Google Scholar 

  • 63.

    Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31(15), 3457–3466. https://doi.org/10.1016/j.cub.2021.06.029 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    Dickson, B. G. & Beier, P. Home-range and habitat selection by adult cougars in southern California. J. Wildl. Manag. 66, 1235–1245. https://doi.org/10.2307/3802956 (2002).

    Article 

    Google Scholar 

  • 65.

    Poessel, S. A. et al. Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape. Biol. Conserv. 180, 224–232. https://doi.org/10.1016/j.biocon.2014.10.010 (2014).

    Article 

    Google Scholar 

  • 66.

    Johnson, D. H. The comparison of usage and availability measurements for evaluation of resource preference. Ecology 61, 65–71. https://doi.org/10.2307/1937156 (1980).

    Article 

    Google Scholar 

  • 67.

    Silva, L. G., Cherem, J., Kasper, C., Trigo, T. & Eizirik, E. Mapping wild cat roadkills in southern Brazil: An assessment of baseline data for species conservation. Cat News (Bougy) 61, 04–07. https://doi.org/10.13140/RG.2.2.17640.88327 (2014).

    Article 

    Google Scholar 

  • 68.

    Srbek-Araujo, A. C., Mendes, S. L. & Chiarello, A. G. Jaguar (Panthera onca Linnaeus, 1758) roadkill in Brazilian Atlantic Forest and implications for species conservation. Braz. J. Biol. 75, 581–586. https://doi.org/10.1590/1519-6984.17613 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Kerley, L. L. et al. Effects of roads and human disturbance on Amur tigers. Conserv. Biol. 16, 97–108. https://doi.org/10.1046/j.1523-1739.2002.99290.x (2002).

    Article 

    Google Scholar 

  • 70.

    Teixeira, F. Z., Rytwinski, T. & Fahrig, L. Inference in road ecology: What we know versus what we think we know. Biol. Lett. https://doi.org/10.1098/rsbl.2020.0140 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Laurance, W. F. The anthropocene. Curr. Biol. 29, 942–995. https://doi.org/10.1016/j.cub.2019.07.055 (2019).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Kanda, C. Z. et al. Spatiotemporal dynamics of conspecific movement explain a solitary carnivore’s space use. J. Zool. 308, 66–74. https://doi.org/10.1111/jzo.12655 (2019).

    Article 

    Google Scholar 

  • 73.

    Zarco-González, M. M., Monroy-Vilchis, O. & Alaníz, J. Spatial model of livestock predation by jaguar and puma in Mexico: Conservation planning. Biol. Conserv. 159, 80–87. https://doi.org/10.1016/j.biocon.2012.11.007 (2013).

    Article 

    Google Scholar 

  • 74.

    Bager, A., Borghi, C. E. & Secco, H. The influence of economics, politics, and environment on road ecology in South America. In Handbook of Road Ecology (eds Van der Ree, R. et al.) 407–413 (Wiley, 2015).

    Google Scholar 

  • 75.

    Kaszta, Z. et al. Simulating the impact of Belt and Road initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa. Landsc. Ecol. 35, 727–746. https://doi.org/10.1007/s10980-020-00976-z (2020).

    Article 

    Google Scholar 

  • 76.

    Cullen, L. Jr. et al. Implications of fine-grained habitat fragmentation and road mortality for jaguar conservation in the Atlantic Forest, Brazil. PLoS ONE 11(12), e0167372. https://doi.org/10.1371/journal.pone.0167372 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Ceia-Hasse, A., Borda-de-Agua, L., Grilo, C. & Pereira, H. M. Global exposure of carnivores to roads. Glob. Ecol. Biogeogr. 26, 592–600. https://doi.org/10.1111/geb.12564 (2017).

    Article 

    Google Scholar 

  • 78.

    Grilo, C., Koroleva, E., Andrášik, R., Bíl, M. & González-Suárez, M. Roadkill risk and population vulnerability in European birds and mammals. Front. Ecol. Environ. 18(6), 323–328. https://doi.org/10.1002/fee.2216 (2020).

    Article 

    Google Scholar 

  • 79.

    Cerqueira, R. C. et al. Potential movement corridor and high road-kill likelihood do not spatially coincide for felids in Brazil: Implications for road mitigation. Environ. Manag. 67, 412–423 (2021).

    Article 

    Google Scholar 

  • 80.

    Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).

    Article 

    Google Scholar 

  • 81.

    Spanowicz, A. G., Teixeira, F. Z. & Jaeger, J. A. G. An adaptive plan for prioritizing road sections for fencing to reduce animal mortality. Conserv. Biol. 34(5), 1210–1220. https://doi.org/10.1111/cobi.13502 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 82.

    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232. https://doi.org/10.1038/nature13717 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 83.

    Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: Assessing the range-wide risks for tigers. Sci. Adv. 6(18), eaaz9619. https://doi.org/10.1126/sciadv.aaz9619 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Galetti, M. et al. Atlantic rainforest’s jaguars in decline. Science 342, 930. https://doi.org/10.1126/science.342.6161.930-a (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 85.

    Paviolo, A. et al. A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147. https://doi.org/10.1038/srep37147 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Freitas, S. R., Hawbaker, T. J. & Metzger, J. P. Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. For. Ecol. Manag. 259, 410–417. https://doi.org/10.1016/j.foreco.2009.10.036 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Mapping classes of carbon

    Design’s new frontier