in

Variation in fine root traits with thinning intensity in a Chinese fir plantation insights from branching order and functional groups

  • 1.

    Crotteau, J. S., Keyes, C. R., Hood, S. M. & Larson, A. J. Vegetation dynamics following compound disturbance in a dry pine forest: Fuel treatment then bark beetle outbreak. Ecol. Appl. 30, 1–19 (2019).

    Google Scholar 

  • 2.

    del Río, M., Bravo-Oviedo, A., Pretzsch, H., Löf, M. & Ruiz-Peinado, R. A review of thinning effects on scots pine stands: From growth and yield to new challenges under global change. For. Syst. 26, eR03S (2017).

    Google Scholar 

  • 3.

    Dang, P., Gao, Y., Liu, J., Yu, S. & Zhao, Z. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Sci. Total Environ. 630, 171–180 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Cabon, A., Mouillot, F., Lempereur, M. & Ourcival, J. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice forest ecology and management thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak. For. Ecol. Manag. 409, 333–342 (2018).

    Google Scholar 

  • 5.

    Drobyshev, I., Widerberg, M. K., Andersson, M. & Wang, X. Thinning around old oaks in spruce production forests: Current practices show no positive effect on oak growth rates and need fine tuning. Scand. J. For. Res. 34, 126–132 (2019).

    Google Scholar 

  • 6.

    Zhou, D., Zhao, S. Q., Liu, S. & Oeding, J. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 10, 3691–3703 (2013).

    ADS 

    Google Scholar 

  • 7.

    Schaedel, M. S. et al. Early forest thinning changes aboveground carbon distribution among pools, but not total amount. For. Ecol. Manag. 389, 187–198 (2017).

    Google Scholar 

  • 8.

    Wang, P., Diao, F., Yin, L. & Huo, C. Absorptive roots trait plasticity explains the variation of root foraging strategies in Cunninghamia lanceolata. Environ. Exp. Bot. 129, 127–135 (2016).

    Google Scholar 

  • 9.

    Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. U. S. A. 113, 8741–8746 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Ellsworth, P. Z. & Sternberg, L. S. L. Linking soil nutrient availability, fine root production and turnover, and species composition in a seasonally dry plant community. Plant Soil 442, 49–63 (2019).

    CAS 

    Google Scholar 

  • 11.

    Solly, E. F. et al. Unravelling the age of fine roots of temperate and boreal forests. Nat. Commun. https://doi.org/10.1038/s41467-018-05460-6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Weemstra, M. Functional ecology. doi:https://doi.org/10.1111/1365-2435.13520.

  • 13.

    Lõhmus, K. et al. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale mining areas. Plant Soil 283, 1–10 (2006).

    Google Scholar 

  • 14.

    Ostonen, I. et al. Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol. 215, 977–991 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Ostonen, I. et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob. Chang. Biol. 17, 3620–3632 (2011).

    ADS 

    Google Scholar 

  • 16.

    Wurzburger, N. & Wright, S. J. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).

    PubMed 

    Google Scholar 

  • 17.

    Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).

    Google Scholar 

  • 18.

    Burton, A. J., Pregitzer, K. S., Zogg, G. P. & Zak, D. R. Drought reduces root respiration in sugar maple forests. Ecol. Appl. 8, 771 (1998).

    Google Scholar 

  • 19.

    Jia, S., Wang, Z., Li, X., Zhang, X. & Mclaughlin, N. B. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiol. 31, 718–726 (2011).

    PubMed 

    Google Scholar 

  • 20.

    Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Chen, W., Koide, R. T. & Eissenstat, D. M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 106, 148–156 (2018).

    CAS 

    Google Scholar 

  • 22.

    Fortier, J., Truax, B., Gagnon, D. & Lambert, F. Abiotic and biotic factors controlling fine root biomass, carbon and nutrients in closed-canopy hybrid poplar stands on post-agricultural land. Sci. Rep. 9, 1–15 (2019).

    Google Scholar 

  • 23.

    Tian, D. L. et al. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in masson pine plantations. Pedosphere 20, 486–493 (2010).

    Google Scholar 

  • 24.

    Noguchi, K. et al. Fine-root dynamics in a young hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning. J. For. Res. 16, 284–291 (2011).

    CAS 

    Google Scholar 

  • 25.

    López, B. C., Sabate, S. & Gracia, C. A. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest. Tree Physiol. 23, 1217–1224 (2003).

    PubMed 

    Google Scholar 

  • 26.

    López-Serrano, F. R. et al. Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model. Eur. J. For. Res. 134, 167–185 (2015).

    Google Scholar 

  • 27.

    Shen, Y. et al. Short-term effects of low intensity thinning on the fine root dynamics of Pinus massoniana plantations in the three Gorges Reservoir Area, China. Forests 8, 1–13 (2017).

    Google Scholar 

  • 28.

    Mosca, E., Di Pierro, E. A., Budde, K. B., Neale, D. B. & González-Martínez, S. C. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species. Mol. Ecol. 27, 647–658 (2018).

    PubMed 

    Google Scholar 

  • 29.

    López, B., Sabaté, S. & Gracia, C. Fine roots dynamics in a Mediterranean forest: Effects of drought and stem density. Tree Physiol. 18, 601–606 (1998).

    PubMed 

    Google Scholar 

  • 30.

    Comas, L. H., Bouma, T. J. & Eissenstat, D. M. Linking root traits to potential growth rate in six temperate tree species. Oecologia 132, 34–43 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Wang, C., McCormack, M. L., Guo, D. & Li, J. Global meta-analysis reveals different patterns of root tip adjustments by angiosperm and gymnosperm trees in response to environmental gradients. J. Biogeogr. 46, 123–133 (2019).

    Google Scholar 

  • 32.

    Borden, K. A. & Isaac, M. E. Management strategies differentially affect root functional trait expression in cocoa agroforestry systems. Agron. Sustain. Dev. 39, 1–10 (2019).

    Google Scholar 

  • 33.

    McCormack, M. L. et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 207, 505–518 (2015).

    PubMed 

    Google Scholar 

  • 34.

    Hishi, T. Heterogeneity of individual roots within the fine root architecture: Causal links between physiological and ecosystem functions. J. For. Res. 12, 126–133 (2007).

    Google Scholar 

  • 35.

    Huang, G., Zhao, X., Zhao, H., Huang, Y. & Zuo, X. Linking root morphology, longevity and function to root branch order: A case study in three shrubs. Plant Soil 336, 197–208 (2010).

    CAS 

    Google Scholar 

  • 36.

    Rewald, B. et al. Root order-based traits of Manchurian walnut & larch and their plasticity under interspecific competition. Sci. Rep. 8, 1–14 (2018).

    ADS 

    Google Scholar 

  • 37.

    Yan, H. et al. Contrasting root foraging strategies of two subtropical coniferous forests under an increased diversity of understory species. Plant Soil 436, 427–438 (2019).

    CAS 

    Google Scholar 

  • 38.

    Wang, Y., Gao, G., Wang, N., Wang, Z. & Gu, J. Effects of morphology and stand structure on root biomass and length differed between absorptive and transport roots in temperate trees. Plant Soil 442, 355–367 (2019).

    CAS 

    Google Scholar 

  • 39.

    Zadworny, M., McCormack, M. L., Mucha, J., Reich, P. B. & Oleksyn, J. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. New Phytol. 212, 389–399 (2016).

    PubMed 

    Google Scholar 

  • 40.

    Yang, Q., Liu, L., Zhang, W., Xu, M. & Wang, S. Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees Struct. Funct. 29, 1207–1218 (2015).

    CAS 

    Google Scholar 

  • 41.

    Tian, D. et al. A long-term evaluation of biomass production in first and second rotations of Chinese fir plantations at the same site. Forestry 84, 411–418 (2011).

    Google Scholar 

  • 42.

    Li, L. et al. Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. For. Ecol. Manag. 433, 64–72 (2019).

    Google Scholar 

  • 43.

    Sword, M. A. Seasonal development of loblolly pine lateral roots in response to stand density and fertilization. Plant Soil 200, 21–25 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Bloom, A. J., Chapin, F. S. & Mooney, H. A. Resource limitation in plants—An economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392. https://doi.org/10.1146/annurev.es.16.110185.002051 (1985).

    Article 

    Google Scholar 

  • 45.

    Terzaghi, M. et al. Forest canopy reduction stimulates xylem production and lowers carbon concentration in fine roots of European beech. For. Ecol. Manag. 379, 81–90 (2016).

    Google Scholar 

  • 46.

    Jevon, F. Fine root respiration is more strongly correlated with root traits than tree species identity. Ecosphere https://doi.org/10.1002/ecs2.2944 (2019).

    Article 

    Google Scholar 

  • 47.

    Luke Mccormack, M., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 195, 823–831 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F. & Dierig, D. A. Root traits contributing to plant productivity under drought. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00442 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Erktan, A. et al. Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. J. Ecol. 106, 2031–2042 (2018).

    Google Scholar 

  • 50.

    Young, D. J. N. et al. Forest recovery following extreme drought in California, USA: Natural patterns and effects of pre-drought management. Ecol. Appl. 30, 1–18 (2019).

    Google Scholar 

  • 51.

    Laughlin, D. C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 17, 771–784 (2014).

    PubMed 

    Google Scholar 

  • 52.

    Weemstra, M. et al. Towards a multidimensional root trait framework: A tree root review. New Phytol. 211, 1159–1169 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Prieto, I. et al. Root functional parameters along a land-use gradient: Evidence of a community-level economics spectrum. J. Ecol. 103, 361–373 (2015).

    Google Scholar 

  • 54.

    Roumet, C. et al. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytol. 210, 815–826 (2016).

    PubMed 

    Google Scholar 

  • 55.

    Kong, D. et al. The root economics spectrum: Divergence of absorptive root strategies with root diameter. Biogeosci. Discuss. 12, 13041–13067 (2015).

    ADS 

    Google Scholar 

  • 56.

    Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).

    PubMed 

    Google Scholar 

  • 57.

    Chen, G. S. et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300, 68–76 (2013).

    Google Scholar 

  • 58.

    Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).

    Google Scholar 

  • 59.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. The Quarterly Review of Biology Vol. 84 (Springer, New York, 2009).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

    The reasons behind lithium-ion batteries’ rapid cost decline