Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original in German) 1, 595–708 (1847).
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. Trends Ecol. Evol. 26, 285–291 (2011).
Google Scholar
Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).
Google Scholar
Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).
Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. Elife 7, e27166 (2018).
Google Scholar
Mousseau, T. A. Ectotherms follow the converse to Bergmann’s rule. Evolution 51, 630–632 (1997).
Google Scholar
Ashton, K. G. & Feldman, C. R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 57, 1151–1163 (2003).
Google Scholar
Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007).
Adams, D. C. & Church, J. O. Amphibians do not follow Bergmann’s rule. Evolution 62, 413–420 (2008).
Google Scholar
Angilletta, M. J. Jr. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 333–342 (2003).
Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).
Google Scholar
Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. M. & Williams, S. E. Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
Ohlberger, J. Climate warming and ectotherm body size—from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).
Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).
Google Scholar
West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (A Review). Proc. Natl. Acad. Sci. USA 83, 1388–1392 (1986).
Google Scholar
Forsman, A., Ahnesjö, J., Caesar, S. & Karisson, M. A model of ecological and evolutionary consequences of color polymorphism. Ecology 89, 34–40 (2008).
Google Scholar
McLean, C. A. & Stuart-Fox, D. Geographic variation in animal colour polymorphisms and its role in speciation. Biol. Rev. 89, 860–873 (2014).
Google Scholar
Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).
Cabe, P. R. et al. Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98, 53–60 (2007).
Google Scholar
Peterman, W. E. & Semlitsch, R. D. Fine-scale habitat associations of a terrestrial salamander: The role of environmental gradients and implications for population dynamics. PLoS ONE 8, e62184 (2013).
Google Scholar
Farallo, V. R. & Miles, D. B. The importance of microhabitat: A comparison of two microendemic species of Plethodon to the widespread P. cinereus. Copeia 104, 67–77 (2016).
Burton, T. M. & Likens, G. E. Salamander populations and biomass in the Hubbard Brook experimental forest, New Hampshire. Copeia 1975, 541–546 (1975).
Mathis, A. Territories of male and female terrestrial salamanders: Costs, benefits, and intersexual spatial associations. Oecologia 86, 433–440 (1991).
Google Scholar
Anthony, C. D. & Pfingsten, R. A. Eastern red-backed salamander. Plethodon cinereus (Green 1818). In Amphibians of Ohio. Ohio Biological Survey (eds Pfingsten, R. A. et al.) 335–360 (2013).
Moore, J.-D. & Ouellet, M. Questioning the use of an amphibian colour morph as an indicator of climate change. Glob. Change Biol. 21, 566–571 (2015).
Google Scholar
Highton, R. Revision of North American salamanders of the genus Plethodon. Bull. Fla. State Mus. 6, 236–367 (1962).
Acord, M. A., Anthony, C. D. & Hickerson, C. M. Assortative mating in a polymorphic salamander. Copeia 2013, 676–683 (2013).
Reiter, M. K., Anthony, C. D. & Hickerson, C. A. M. Territorial behavior and ecological divergence in a polymorphic salamander. Copeia 2014, 481–488 (2014).
Paluh, D. J., Eddy, C., Ivanov, K., Hickerson, C. M. & Anthony, C. D. Selective foraging on ants by a terrestrial polymorphic salamander. Am. Midl. Nat. 174, 265–277 (2015).
Stuczka, A., Hickerson, C. M. & Anthony, C. D. Niche partitioning along the diet axis in a colour polymorphic population of Eastern Red-backed Salamanders, Plethodon cinereus. Amphibia-Reptilia 37, 283–290 (2016).
Otaibi, B. W., Johnson, Q. K. & Cosentino, B. J. Postautotomy tail movement differs between colour morphs of the red-backed salamander (Plethodon cinereus). Amphibia-Reptilia 38, 395–399 (2017).
Hantak, M. M., Brooks, K. M., Hickerson, C. M., Anthony, C. D. & Kuchta, S. R. A spatiotemporal assessment of dietary partitioning between color morphs of a terrestrial salamander. Copeia 108, 727–736 (2020).
Moreno, G. Behavioral and physiological differentiation between the color morphs of the salamander, Plethodon cinereus. J. Herpetol. 23, 335–341 (1989).
Anthony, C. D., Venesky, M. D. & Hickerson, C. A. M. Ecological separation in a polymorphic terrestrial salamander. J. Anim. Ecol. 77, 646–653 (2008).
Google Scholar
Evans, A. E., Urban, M. C. & Jockusck, E. L. Developmental temperature alters color polymorphism but not hatchling size in a woodland salamander. Oecoloiga 192, 909–918 (2020).
Google Scholar
Petruzzi, E. E., Niewiarowski, P. H. & Moore, F. B. G. The role of thermal niche selection in maintenance of a colour polymorphism in redback salamanders (Plethodon cinereus). Front. Zool. 5, 3–10 (2006).
Muñoz, D. J., Hesed, K. M., Grant, E. H. C. & Miller, D. A. W. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change. Ecol. Evol. 6, 8740–8755 (2016).
Google Scholar
Lotter, F. & Scott, N. J. Jr. Correlation between climate and distribution of the color morphs of the salamander Plethodon cinereus. Copeia 1977, 681–690 (1977).
Gibbs, J. P. & Karraker, N. E. Effects of warming conditions in eastern North American forests on Red-Backed Salamander morphology. Conserv. Biol. 20, 913–917 (2006).
Google Scholar
Cosentino, B. J., Moore, J.-D., Karraker, N. E., Ouellet, M. & Gibbs, J. P. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander. Ecol. Evol. 7, 5426–5434 (2017).
Google Scholar
Evans, A. E., Forester, B. R., Jockusch, E. L. & Urban, M. C. Salamander morph frequencies do not evolve as predicted in response to 40 years of climate change. Ecography 41, 1687–1697 (2018).
Vose, R., Easterling, D., Kunkel, K., LeGrande, A. & Wehner, M. Temperature changes in the United States. In (eds Wuebbles, D. J. et al.). Climate Science Special Report: Fourth National Climate Assessment, Vol. 1, 185–206 (2017).
Highton, R. Correlating costal grooves with trunk vertebrae in salamanders. Copeia 1957, 107–109 (1957).
Fisher-Reid, C. M. & Wiens, J. J. Is geographic variation within species related to macroevolutionary patterns between species?. J. Evol. Biol. 28, 1502–1515 (2015).
Google Scholar
Wake, D. B. Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. South. Calif. Acad. Sci. 4, 1–111 (1966).
Jockush, E. L. Geographic variation and phenotypic plasticity of number of trunk vertebrae in Slender Salamanders, Batrachoseps (Caudata: Plethodontidae). Evolution 51, 1966–1982 (1997).
Parra-Olea, G. & Wake, D. B. Extreme morphological and ecological homoplasy in tropical salamanders. Proc. Natl. Acad. Sci. USA 98, 7888–7891 (2001).
Google Scholar
Pike, D. A. & Mitchell, J. C. Burrow-dwelling ecosystem engineers provide thermal refugia throughout the landscape. Anim. Conserv. 16, 694–703 (2013).
Caruso, N. M., Sears, M. W., Adams, D. C. & Lips, K. R. Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob. Change Biol. 20, 1751–1759 (2014).
Google Scholar
Radomski, T., Hantak, M. M., Brown, A. D. & Kuchta, S. R. Multilocus phylogeography of the Eastern Red-backed Salamander (Plethodon cinereus): Cryptic Appalachian diversity and post-glacial range expansion. Herpetologica 76, 61–73 (2020).
Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
Hill, A. W. et al. The Notes from Nature tool for unlocking biodiversity records from museum records through citizen science. ZooKeys 209, 219–223 (2012).
Constable, H., Guralnick, R., Wieczorek, J., Spencer, C. & Peterson, A. T. VertNet: A new model for biodiversity data sharing. PLoS Biol. 8, e1000309 (2010).
Google Scholar
Guralnick, R. & Constable, H. VertNet: Creating a data-sharing community. Bioscience 60, 258–259 (2010).
Guralnick, R. P. et al. The importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).
Google Scholar
Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).
Google Scholar
Hollister, J., Shah, T., Robitaille, A., Beck, M. & Johnson, M. elevatr: Access elevation data from various APIs. R package version 0.3.1. https://doi.org/10.5281/zenodo.4282962 (2020).
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).
Barton, K. Package ‘MuMIn’. Model Selection and Model Averaging Based on Information Criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html (2012).
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
Google Scholar
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
Google Scholar
Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).
Google Scholar
Fisher-Reid, M. C., Engstrom, T. N., Kuczynski, C. A., Stephens, P. R. & Wiens, J. J. Parapatric divergence of sympatric morphs in a salamander: Incipient speciation on Long Island?. Mol. Ecol. 22, 4681–4694 (2013).
Google Scholar
Brodie, E. D. III. & Brodie, E. D. Jr. Tetrodotoxin resistance in garter snakes: An evolutionary response of predators to dangerous prey. Evolution 44, 651–659 (1990).
Google Scholar
Brodie, E. D. Jr., Ridenhour, B. J. & Brodie, E. D. III. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56, 2067–2082 (2002).
Google Scholar
Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).
Google Scholar
Siepielski, A. M. et al. Spatial patterns of directional phenotypic selection. Ecol. Lett. 16, 1382–1392 (2013).
Google Scholar
Thompson, J. N. Coevolution: The geographic mosaic of coevolutionary arms races. Curr. Biol. 15, 992–994 (2005).
Corl, A., Davis, A. R., Kuchta, S. R. & Sinervo, B. Selective loss of polymorphic mating types is associated with rapid phenotype evolution during morphic speciation. Proc. Natl. Acad. Sci. 107, 4254–4259 (2010).
Google Scholar
Roulin, A. Melanin-based colour polymorphism responding to climate change. Glob. Change Biol. 20, 3344–3350 (2014).
Google Scholar
Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).
Google Scholar
Delhey, K. Gloger’s rule. Curr. Biol. 27, R689–R691 (2017).
Google Scholar
Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).
Hantak, M. M. & Kuchta, S. R. Predator perception across space and time: Relative camouflage in a colour polymorphic salamander. Biol. J. Linn. Soc. 123, 21–33 (2018).
Atkinson, D. Temperature and organism size—A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).
Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).
Google Scholar
Martof, B. S. & Rose, F. L. Geographic variation in southern populations of Desmognathus ochrophaeus. Am. Midl. Nat. 69, 376–425 (1963).
Tilley, S. G. Life histories and comparative demography of two salamander populations. Copeia 1980, 806–821 (1980).
Peterman, W. E., Crawford, J. A. & Hocking, D. J. Effects of elevation on plethodontid salamander body size. Copeia 104, 202–208 (2016).
Williams, E. E., Highton, R. & Cooper, D. M. Breakdown of polymorphism of the red-backed salamander on Long Island. Evolution 22, 76–86 (1968).
Google Scholar
Wake, D. B. & Lynch, J. F. The distribution, ecology and evolutionary history of plethodontid salamanders in tropical America. Sci. Bull. Nat. Hist. Mus. Los Angel Cty. 25, 1–65 (1976).
Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486 (2020).
Google Scholar
Wake, D. B. Homoplasy: The result of natural selection, or evidence of design limitations?. Am. Nat. 138, 543–567 (1991).
Farallo, V. R., Wier, R. & Miles, D. B. The bogert effect revisited: Salamander regulatory behaviors are differently constrained by time and space. Ecol. Evol. 8, 11522–11532 (2018).
Google Scholar
Connette, G. M., Crawford, J. A. & Peterman, W. E. Climate change and shrinking salamanders: Alternative mechanisms for changes in plethodontid salamander body size. Glob. Change Biol. 21, 2834–2843 (2015).
Google Scholar
Karell, P., Ahola, K., Karstinen, T., Valkama, J. & Brommer, J. E. Climate change drives microevolution in a wild bird. Nat. Commun. 2, 208 (2011).
Google Scholar
Lepetz, V., Massot, M., Chaine, A. S. & Clobert, J. Climate warming and the evolution of morphotypes in a reptile. Glob. Change Biol. 15, 454–466 (2009).
Google Scholar
Panayotova, I. N. & Horth, L. Modeling the impact of climate change on a rare color morph in fish. Ecol. Model. 387, 10–16 (2018).
Clusella-Trullas, S. & Nielsen, M. The evolution of insect body coloration under changing climates. Curr. Opin. Insect Sci 41, 25–32 (2020).
Google Scholar
Sullivan, C. N. & Koski, M. H. The effects of climate change on floral anthocyanin polymorphisms. Proc. R. Soc. B Biol. Sci. 288, 20202693 (2021).
Hugall, A. F. & Stuart-Fox, D. Accelerated speciation in colour-polymorphic birds. Nature 485, 631–634 (2012).
Google Scholar
Gray, S. M. & Mckinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007).
Google Scholar
Mckinnon, J. S. & Pierotti, M. R. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).
Google Scholar
Hantak, M. M. et al. Do genetic structure and landscape heterogeneity impact color morph frequency in a polymorphic salamander?. Ecography 42, 1383–1394 (2019).
U. S. Geological Survey – Gap Analysis Project. Eastern Red-backed Salamander (Plethodon cinereus) aERBSx_CONUS_2001v1 Range Map. https://doi.org/10.5066/F7P26X90 (2017).
Source: Ecology - nature.com