in

Altered fire regimes modify lizard communities in globally endangered Araucaria forests of the southern Andes

  • 1.

    Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).

    PubMed 

    Google Scholar 

  • 2.

    Harvey, B. J., Donato, D. C. & Turner, M. G. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology 97, 2272–2282 (2016).

    PubMed 

    Google Scholar 

  • 3.

    Prichard, S. J., Stevens-Rumann, C. S. & Hessburg, P. F. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 396, 217–233 (2017).

    Google Scholar 

  • 4.

    González, M. E., Lara, A., Urrutia, R. & Bosnich, J. Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42° S). Bosque 32, 215–219 (2011).

    Google Scholar 

  • 5.

    Perfetti-Bolaño, A., González-acuña, D., Barrientos, C. & Moreno, L. Efectos del fuego sobre la avifauna del cerro Cayumanque, región del Bío-bío, Chile. Boletín Chil. Ornitol. 19, 1–11 (2013).

    Google Scholar 

  • 6.

    Engstrom, R. T. First-order fire effects on animals: Review and recommendations. Fire Ecol. 6, 115–130 (2010).

    Google Scholar 

  • 7.

    Doherty, T. S. et al. Ecosystem responses to fire: Identifying cross-taxa contrasts and complementarities to inform management strategies. Ecosystems 20, 872–884 (2017).

    Google Scholar 

  • 8.

    Kowaljow, E. et al. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degrad. Dev. 30, 266–277 (2019).

    Google Scholar 

  • 9.

    Ferreira, C. C., Santos, X. & Carretero, M. A. Does ecophysiology mediate reptile responses to fire regimes? Evidence from Iberian lizards. PeerJ 4, e2107 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Russell, K. R., Van Lear, D. H. & Guynn, D. C. Prescribed fire effects on herpetofauna: Review and management implications. Wildl. Soc. Bull. 27, 374–384 (1999).

    Google Scholar 

  • 11.

    Shine, R., Brown, G. P. & Elphick, M. J. Effects of intense wildfires on the nesting ecology of oviparous montane lizards. Austral. Ecol. 41, 756–767 (2016).

    Google Scholar 

  • 12.

    Driscoll, D. A., Smith, A. L., Blight, S. & Maindonald, J. Reptile responses to fire and the risk of post-disturbance sampling bias. Biodivers. Conserv. 21, 1607–1625 (2012).

    Google Scholar 

  • 13.

    Hu, Y., Kelly, L. T., Gillespie, G. R. & Jessop, T. S. Lizard responses to forest fire and timber harvesting: Complementary insights from species and community approaches. For. Ecol. Manag. 379, 206–215 (2016).

    Google Scholar 

  • 14.

    Hromada, S. J. et al. Response of reptile and amphibian communities to the reintroduction of fire in an oak/hickory forest. For. Ecol. Manag. 428, 1–13 (2018).

    Google Scholar 

  • 15.

    Chergui, B., Pleguezuelos, J. M., Fahd, S. & Santos, X. Modelling functional response of reptiles to fire in two Mediterranean forest types. Sci. Total Environ. 732, 139205 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Costa, B. M., Pantoja, D. L., Sousa, H. C., de Queiroz, T. A. & Colli, G. R. Long-term, fire-induced changes in habitat structure and microclimate affect Cerrado lizard communities. Biodivers. Conserv. 29, 1659–1681 (2020).

    Google Scholar 

  • 17.

    Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).

    Google Scholar 

  • 18.

    Arroyo, M. T. K., Cavieres, L., Peñaloza, A., Riveros, M. & Faggi, A. Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Ecología de los Bosques Nativos de Chile (eds Armesto, J. et al.) 71–100 (1995).

  • 19.

    González, M. E., Veblen, T. T. & Sibold, J. S. Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32, 1187–1202 (2005).

    Google Scholar 

  • 20.

    Veblen, T. T. Regeneration patterns in Araucaria araucana forests in Chile. J. Biogeogr. 9, 11 (1982).

    Google Scholar 

  • 21.

    Aagesen, D. L. Indigenous resource rights and conservation of the monkey-puzzle tree (Araucaria araucana, Araucariaceae): A case study from southern Chile. Econ. Bot. 52, 146–160 (1998).

    Google Scholar 

  • 22.

    Aagesen, D. Burning monkey-puzzle: Native fire ecology and forest management in northern Patagonia. Agric. Human Values 21, 233–242 (2004).

    Google Scholar 

  • 23.

    Pollmann, W. & Veblen, T. T. Nothofagus regeneration dynamics in south-central Chile: A test of a general model. Ecol. Monogr. 74, 615–634 (2004).

    Google Scholar 

  • 24.

    Ortega, M., Ponce, X. & Tamarín, R. Manual con medidas para la prevención de incendios forestales, IX Región (Corporación Nacional Forestal (CONAF), 2006).

    Google Scholar 

  • 25.

    Ferreira, D., Pinho, C., Brito, J. C. & Santos, X. Increase of genetic diversity indicates ecological opportunities in recurrent-fire landscapes for wall lizards. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • 26.

    Nimmo, D. G. et al. Predicting the century-long post-fire responses of reptiles. Glob. Ecol. Biogeogr. 21, 1062–1073 (2012).

    Google Scholar 

  • 27.

    Smith, A. L., Michael Bull, C. & Driscoll, D. A. Successional specialization in a reptile community cautions against widespread planned burning and complete fire suppression. J. Appl. Ecol. 50, 1178–1186 (2013).

    Google Scholar 

  • 28.

    Kelly, L. T., Bennett, A. F., Clarke, M. F. & Mccarthy, M. A. Optimal fire histories for biodiversity conservation. Conserv. Biol. 29, 473–481 (2015).

    PubMed 

    Google Scholar 

  • 29.

    Valentine, L. E., Reaveley, A., Johnson, B., Fisher, R. & Wilson, B. A. Burning in banksia woodlands: How does the fire-free period influence reptile communities?. PLoS ONE 7, e34448 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Uribe, S. & Estades, C. F. Reptiles in monterey pine plantations of the coastal range of central Chile. Rev. Chil. Hist. Nat. 87, 1–8 (2014).

    Google Scholar 

  • 31.

    Santos, X., Badiane, A. & Matos, C. Contrasts in short- and long-term responses of Mediterranean reptile species to fire and habitat structure. Oecologia 180, 205–216 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 32.

    Ferreira, D., Mateus, C. & Santos, X. Responses of reptiles to fire in transition zones are mediated by bioregion affinity of species. Biodivers. Conserv. 25, 1543–1557 (2016).

    Google Scholar 

  • 33.

    Zúñiga, A. H. Changes in the structure of assemblages of three liolaemus lizards (Iguania, liolaemidae) in a protected area of south-central Chile affected by a mixed-severity wildfire. Zoodiversity 54, 265–274 (2020).

    Google Scholar 

  • 34.

    Rubio, A. V. & Simonetti, J. A. Lizard assemblages in a fragmented landscape of central Chile. Eur. J. Wildl. Res. 57, 195–199 (2011).

    Google Scholar 

  • 35.

    Driscoll, D. A. & Henderson, M. K. How many common reptile species are fire specialists? A replicated natural experiment highlights the predictive weakness of a fire succession model. Biol. Conserv. 141, 460–471 (2008).

    Google Scholar 

  • 36.

    Lindenmayer, D. B., Claridge, A. W., Gilmore, A. M., Michael, D. & Lindenmayer, B. D. The ecological roles of logs in Australian forests and the potential impacts of harvesting intensification on log-using biota. Pacific Conserv. Biol. 8, 121–140 (2002).

    Google Scholar 

  • 37.

    Evans, M. J., Newport, J. S. & Manning, A. D. A long-term experiment reveals strategies for the ecological restoration of reptiles in scattered tree landscapes. Biodivers. Conserv. 28, 2825–2843 (2019).

    Google Scholar 

  • 38.

    Mella, J. E. Guía de Campo Reptiles de Chile. Tomo: 1 Zona Central (2017).

  • 39.

    Whitford, K. R. & McCaw, W. L. Coarse woody debris is affected by the frequency and intensity of historical harvesting and fire in an open eucalypt forest. Aust. For. 82, 56–69 (2019).

    Google Scholar 

  • 40.

    Vidal, M. A. & Labra, A. Herpetología de Chile (GráficAndes, 2008).

    Google Scholar 

  • 41.

    Meiri, S. & Chapple, D. G. Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’. Biol. Conserv. 204, 6–15 (2016).

    Google Scholar 

  • 42.

    Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Conserv. 204, 1–5 (2016).

    Google Scholar 

  • 43.

    Watson, J. E. M., Whittaker, R. J. & Dawson, T. P. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120, 311–327 (2004).

    Google Scholar 

  • 44.

    Scott, D. M. et al. The impacts of forest clearance on lizard, small mammal and bird communities in the arid spiny forest, southern Madagascar. Biol. Conserv. 127, 72–87 (2006).

    Google Scholar 

  • 45.

    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    ADS 

    Google Scholar 

  • 46.

    Hu, Y., Urlus, J., Gillespie, G., Letnic, M. & Jessop, T. S. Evaluating the role of fire disturbance in structuring small reptile communities in temperate forests. Biodivers. Conserv. 22, 1949–1963 (2013).

    Google Scholar 

  • 47.

    Gutiérrez, J. A., Krenz, J. D. & Ibargüengoytía, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332–337 (2010).

    Google Scholar 

  • 48.

    Artacho, P., Saravia, J., Perret, S., Bartheld, J. L. & Le Galliard, J. F. Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. J. Therm. Biol. 63, 78–87 (2017).

    PubMed 

    Google Scholar 

  • 49.

    Elzer, A. L. et al. Forest-fire regimes affect thermoregulatory opportunities for terrestrial ectotherms. Austral. Ecol. 38, 190–198 (2013).

    Google Scholar 

  • 50.

    Todd, B. D. & Andrews, K. M. Response of a reptile guild to forest harvesting. Conserv. Biol. 22, 753–761 (2008).

    PubMed 

    Google Scholar 

  • 51.

    Santos, X., Sillero, N., Poitevin, F. & Cheylan, M. Realized niche modelling uncovers contrasting responses to fire according to species-specific biogeographical affinities of amphibian and reptile species. Biol. J. Linn. Soc. 126, 55–67 (2019).

    Google Scholar 

  • 52.

    Farnsworth, L. M., Nimmo, D. G., Kelly, L. T., Bennett, A. F. & Clarke, M. F. Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. Divers. Distrib. 20, 663–673 (2014).

    Google Scholar 

  • 53.

    Vera-Escalona, I. M., Coronado, T., Muñoz-Mendoza, C. & Victoriano, P. F. Distribución histórica y actual de la lagartija Liolaemus pictus (Dumeril & Bibron 1837) (Liolaemidae) y nuevo límite continental sur de distribución. Gayana 74, 139–146 (2010).

    Google Scholar 

  • 54.

    Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B Biol. Sci. 285, 20172241 (2018).

    Google Scholar 

  • 55.

    Bowman, D. M. J. S. & Haberle, S. G. Paradise burnt: How colonizing humans transform landscapes with fire. Proc. Natl. Acad. Sci. USA. 107, 21234–21235 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Maia-Carneiro, T., Dorigo, T. A. & Rocha, C. F. D. Influences of seasonality, thermal environment and wind intensity on the thermal ecology of Brazilian sand lizards in a restinga remnant. South Am. J. Herpetol. 7, 241–251 (2012).

    Google Scholar 

  • 57.

    Nimmo, D. G., Kelly, L. T., Farnsworth, L. M., Watson, S. J. & Bennett, A. F. Why do some species have geographically varying responses to fire history?. Ecography 37, 805–813 (2014).

    Google Scholar 

  • 58.

    Jones, G. M. et al. Megafires: An emerging threat to old-forest species. Front. Ecol. Environ. 14, 300–306 (2016).

    Google Scholar 

  • 59.

    Chergui, B., Fahd, S., Santos, X. & Pausas, J. G. Socioeconomic factors drive fire-regime variability in the mediterranean basin. Ecosystems 21, 619–628 (2018).

    Google Scholar 

  • 60.

    Hellmich, W. & Goetsch, W. Die eidechsen Chiles, insbesondere die gattung Liolaemus, nach den sammlungen Goetsch-Hellmich, Vol. 24 (1934).

  • 61.

    Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., Villalba,
    A. The ecology of the conifers of southern South America. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S.) 129–135 (Melbourne University Press, Carlton, Victoria, 1995).

    Google Scholar 

  • 62.

    Donoso, C. Bosques templados de Chile y Argentina. Variación, Estructura y Dinámica (Editorial Universitaria S.A., 1993).

    Google Scholar 

  • 63.

    Fuentes-Ramirez, A., Barrientos, M., Almonacid, L., Arriagada-Escamilla, C. & Salas-Eljatib, C. Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests. Appl. Soil Ecol. 131, 99–106 (2018).

    Google Scholar 

  • 64.

    Urrutia-Estrada, J., Fuentes-Ramírez, A. & Hauenstein, E. Diferencias en la composición florística en bosques de Araucaria-Nothofagus afectados por distintas severidades de fuego. Gayana Bot. 75, 12–25 (2018).

    Google Scholar 

  • 65.

    González, M. E., Szejner, M., Muñoz, A. A. & Silva, J. Incendios catastróficos en bosques andinos de Araucaria-Nothofagus: Efecto de la severidad y respuesta de la vegetación. Bosque Nativ. 46, 12–17 (2009).

    Google Scholar 

  • 66.

    Luebert, F. & Pliscoff, P. Sinopsis bioclimática y vegetacional de Chile (Editorial Universitaria S.A., 2006).

    Google Scholar 

  • 67.

    (CONAF), C. N. F. Análisis de la afectación y severidad de los incendios forestales (2017).

  • 68.

    Zúñiga, A. H. et al. Rodent assemblage composition as indicator of fire severity in a protected area of south-central Chile. Austral. Ecol. 46, 249–260 (2021).

    Google Scholar 

  • 69.

    Demangel, D. Reptiles en Chile (Fauna Nativa Ediciones, 2016).

    Google Scholar 

  • 70.

    Vera-Escalona, I. et al. Lizards on ice: Evidence for multiple refugia in Liolaemus pictus (Liolaemidae) during the last glacial maximum in the southern Andean beech forests. PLoS ONE 7, e48358 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Ibarra, J. T. & Martin, K. Biotic homogenization: Loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).

    Google Scholar 

  • 72.

    Buckland, S. T., Rexstad, E. A., Marques, T. A. & Oedekoven, C. S. Methods in Statistical Ecology (Springer, 2015).

    MATH 

    Google Scholar 

  • 73.

    Ibarra, J. T. & Martin, K. Beyond species richness: An empirical test of top predators as surrogates for functional diversity and endemism. Ecosphere 6, 1–15 (2015).

    Google Scholar 

  • 74.

    Royle, J. A., Dawson, D. K. & Bates, S. Modeling abundance effects in distance sampling. Ecology 85, 1591–1597 (2004).

    Google Scholar 

  • 75.

    Marques, T. A., Thomas, L., Fancy, S. G. & Buckland, S. T. Improving estimates of bird density using multiple-covariate distance sampling. Auk 124, 1229–1243 (2007).

    Google Scholar 

  • 76.

    Fiske, I. J. & Chandler, R. B. Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).

    Google Scholar 

  • 77.

    R Core Team. R: A Language and Environment for Statistical Computing (2019).

  • 78.

    Furnas, B. J., Newton, D. S., Capehart, G. D. & Barrows, C. W. Hierarchical distance sampling to estimate population sizes of common lizards across a desert ecoregion. Ecol. Evol. 9, 3046–3058 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Burnham, K. P. & Anderson, D. R. Model Selection and Inference. A Practical Information-Theoretical Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 80.

    Pinheiro, J. & Bates, D. Package ‘nlme’: Linear and Nonlinear Mixed Effects Models (2020).

  • 81.

    Mazerolle, J. M. Package ‘AICcmodavg’: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).

  • 82.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).

    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake

    The reasons behind lithium-ion batteries’ rapid cost decline