in

Monitoring fish communities through environmental DNA metabarcoding in the fish pass system of the second largest hydropower plant in the world

  • 1.

    de Souza Dias, V., Pereira da Luz, M., Medero, G. M. & Tarley Ferreira Nascimento, D. An overview of hydropower reservoirs in Brazil: Current situation, future perspectives and impacts of climate change. Water 10, 592 (2018).

    Google Scholar 

  • 2.

    Patias, J., Zuquette, L. V. & Rodrigues-Carvalho, J. A. Piezometric variations in the basaltic massif beneath the Itaipu hydroelectric plant (Brazil/Paraguay border): Right Buttress Dam. Bull. Eng. Geol. Environ. 74, 207–231 (2015).

    CAS 

    Google Scholar 

  • 3.

    Agostinho, A. A. Pesquisas, monitoramento e manejo da fauna aquática em empreendimentos hidrelétricos. In Seminário Sobre Fauna Aquática E O Setor Elétrico Brasileiro 38–59 (Brasil, 1994).

  • 4.

    Makrakis, S., Gomes, L. C., Makrakis, M. C., Fernandez, D. R. & Pavanelli, C. S. The Canal da Piracema at Itaipu Dam as a fish pass system. Neotrop. Ichthyol. 5, 185–195 (2007).

    Google Scholar 

  • 5.

    Dos Reis, R. B., Frota, A., Depra, G. D. C., Ota, R. R. & Da Graca, W. J. Freshwater fishes from Paraná State, Brazil: An annotated list, with comments on biogeographic patterns, threats, and future perspectives. Zootaxa 4868, 451–494 (2020).

    Google Scholar 

  • 6.

    Becker, R. A., Sales, N. G., Santos, G. M., Santos, G. B. & Carvalho, D. C. DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco. J. Fish Biol. 87, 159–168 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Milan, D. T. et al. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Sci. Rep. 10, 1–12 (2020).

    ADS 

    Google Scholar 

  • 8.

    Agostinho, A. A., Pelicice, F. M. & Gomes, L. C. Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Braz. J. Biol. 68, 1119–1132 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Bonar, S. A., Hubert, W. A. & Willis, D. W. Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda, (USA, 2009).

    Google Scholar 

  • 10.

    Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197, 131–138 (2016).

    Google Scholar 

  • 11.

    Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish Biol. 89, 12–47 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Baumgartner, G. et al. Peixes do baixo rio Iguaçu. (Eduem, 2012).

  • 13.

    Taberlet, P., Bonin, A., Coissac, E. & Zinger, L. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).

    Google Scholar 

  • 14.

    Taberlet, P., Coissac, E., Pompanon, F., Christian, B. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 33, 2045–2050 (2012).

    Google Scholar 

  • 15.

    Ritter, C. D. et al. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Sci. Rep. 9, 1–3 (2019).

    CAS 

    Google Scholar 

  • 16.

    Sales, N. G. et al. Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding. Sci. Total Environ. 754, 142096 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).

    PubMed 

    Google Scholar 

  • 19.

    Zinger, L. et al. Advances and prospects of environmental DNA in neotropical rainforests. Adv. Ecol. Res. 62, 331–373 (2020).

    Google Scholar 

  • 20.

    Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 119–130. https://doi.org/10.1002/edn3.14 (2020).

    Article 

    Google Scholar 

  • 22.

    Blaxter, M. et al. Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. B Biol. Sci. 360(1462), 1935–1943. https://doi.org/10.1098/rstb.2005.1725 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 81257 (2016).

  • 25.

    Muha, T. P., Rodriguez-Barreto, D., O’Rorke, R., Garcia de Leaniz, C. & Consuegra, S. Using eDNA metabarcoding to monitor changes in fish community composition after barrier removal. Front. Ecol. Evol. 9, 28 (2021).

    Google Scholar 

  • 26.

    Kitano, T., Umetsu, K., Tian, W. & Osawa, M. Two universal primer sets for species identification among vertebrates. Int. J. Legal Med. 121, 423–427 (2007).

    PubMed 

    Google Scholar 

  • 27.

    Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS One 12, e0175186 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: A case study, using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).

    Google Scholar 

  • 29.

    De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS One 11, e0165273 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Ritter, C. D. et al. Locality or habitat? Exploring predictors of biodiversity in Amazonia. Ecography (Cop.) 42, 321–333 (2019).

    Google Scholar 

  • 31.

    CFMV-Resolução no 1000 de 11 de maio de 2012—Dispõe sobre procedimentos e métodos de eutanásia em animais e dá outras providências. (2012).

  • 32.

    Britski, H. A., de Silimon, K. Z. S. & Lopes, B. S. Peixes do Pantanal: manual de identificação, ampl. Brasília, DF, Embrapa Informação Tecnológica (2007).

  • 33.

    Ota, R. R., Deprá, G. de C., Graça, W. J. da & Pavanelli, C. S. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop. Ichthyol. 16(2). https://www.scielo.br/j/ni/a/tScwvm8JLhKnbxKjtBQLPBx/abstract/?lang=en (2018).

  • 34.

    Neris, N., Villalba, F., Kamada, D. & Viré, S. Guía de peces del Paraguay/Guide of fishes of Paraguay. Zamphiropolos, (Paraguay, 2010).

    Google Scholar 

  • 35.

    Pie, M. R. et al. Development of a real-time PCR assay for the detection of the golden mussel (Limnoperna fortunei, Mytilidae) in environmental samples. An. Acad. Bras. Cienc. 89, 1041–1045 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Boeger, W. A. et al. Testing a molecular protocol to monitor the presence of golden mussel larvae (Limnoperna fortunei) in plankton samples. J. Plankton Res. 29, 1015–1019 (2007).

    CAS 

    Google Scholar 

  • 38.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  • 39.

    Van Rossum, G. & Drake, F. L. Python 3 References Manual. Scotts Valley CA: CreateSpace. (2009).

  • 40.

    R Core Team. R: the R project for statistical computing. 2019. https://www.r-project.org/ (accessed 30 Mar 2020).

  • 41.

    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).

    Google Scholar 

  • 44.

    Team, Rs. RStudio: integrated development for R. RStudio, Inc., Boston, MA https://www.rstudio.com42, 84 (2015).

  • 45.

    Wickham, H. tidyverse: Easily Install and Load “Tidyverse” Packages (Version R package version 1.1. 1). (2017).

  • 46.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 

  • 47.

    Tang, Y., Horikoshi, M. & Li, W. ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 8, 474 (2016).

    Google Scholar 

  • 48.

    Auguie, B. & Antonov, A. gridExtra: Miscellaneous functions for “grid” graphics (Version 2.2. 1)[Computer software]. (2016).

  • 49.

    Kassambara, A. & Kassambara, M. A. Package ‘ggpubr’. (2020).

  • 50.

    Oksanen, J. et al. Vegan: Community ecology package. R package version 1.17-4. https://cran.r-project.org. Acesso em 23, 2010 (2010).

  • 51.

    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Google Scholar 

  • 53.

    Marcon, E., Herault, B. & Marcon, M. E. Package ‘entropart’. (2021).

  • 54.

    Mächler, E., Walser, J.-C. & Altermatt, F. Decision making and best practices for taxonomy-free eDNA metabarcoding in biomonitoring using Hill numbers. BioRxiv (2020).

  • 55.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    León, A., Reyes, J., Burriel, V. & Valverde, F. Data quality problems when integrating genomic information. In International Conference on Conceptual Modeling 173–182 (Springer, 2016).

  • 58.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Stahlhut, J. K. et al. DNA barcoding reveals diversity of hymenoptera and the dominance of parasitoids in a sub-arctic environment. BMC Ecol. 13, 2 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Gillet, B. et al. Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir. PLoS One 13, e0208592 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Barrett, M. et al. Living planet report 2018: Aiming higher. WWF. Available at: https://www.globallandscapesforum.org/publication/living-planet-report-2018-aiming-higher/ (2018).

  • 62.

    Díaz, S. M. et al. The global assessment report on biodiversity and ecosystem services: Summary for policy makers. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 56, (2019).

  • 63.

    Dudgeon, D. Asian river fishes in the Anthropocene: Threats and conservation challenges in an era of rapid environmental change. J. Fish Biol. 79, 1487–1524 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R960–R967 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    He, F. et al. Disappearing giants: A review of threats to freshwater megafauna. Wiley Interdiscip. Rev. Water 4, e1208 (2017).

    Google Scholar 

  • 66.

    Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the floodplain of the Upper Paraná River: Effects of hydrological regulation by dams. (2018). Int. J. Ecohydrol. Hydrobiol Warsaw. 4(3), 267–280 (2004).

    Google Scholar 

  • 67.

    Santana, M. L., Carvalho, F. R. & Teresa, F. B. Broad and fine-scale threats on threatened Brazilian freshwater fish: Variability across hydrographic regions and taxonomic groups. Biota Neotrop. 21 (2). https://www.scielo.br/j/bn/a/YqFbWSy5vbfHy3QK9kNpdKp/?format=html&lang=en (2021).

  • 68.

    Matthews, W. J. Patterns in Freshwater Fish Ecology. (Springer Science & Business Media, 2012).

  • 69.

    de Oliveira Bueno, E., Alves, G. J. & Mello, C. R. Hydroelectricity water footprint in Parana hydrograph region, Brazil. Renew. Energy 162, 596–612 (2020).

    Google Scholar 

  • 70.

    Camacho Guerreiro, A. I., Amadio, S. A., Fabre, N. N. & da Silva Batista, V. Exploring the effect of strong hydrological droughts and floods on populational parameters of Semaprochilodus insignis (Actinopterygii: Prochilodontidae) from the Central Amazonia. Environ. Dev. Sustain. 23, 3338–3348 (2021).

    Google Scholar 

  • 71.

    Jespersen, H., Rasmussen, G. & Pedersen, S. Severity of summer drought as predictor for smolt recruitment in migratory brown trout (Salmo trutta). Ecol. Freshw. Fish 30, 115–124 (2021).

    Google Scholar 

  • 72.

    Pool, T. K., Grenouillet, G. & Villéger, S. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Divers. Distrib. 20, 1235–1244 (2014).

    Google Scholar 

  • 73.

    de Oliveira, E. F., Goulart, E. & Minte-Vera, C. V. Fish diversity along spatial gradients in the Itaipu Reservoir, Paraná, Brazil. Braz. J. Biol. 64, 447–458 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Daga, V. S. et al. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: Comparing the roles of introduced species and their vectors. Hydrobiologia 746, 327–347 (2015).

    Google Scholar 

  • 75.

    Vitule, J. R. S. Introdução de peixes em ecossistemas continentais brasileiros: revisão, comentários e sugestões de ações contra o inimigo quase invisível. Neotrop. Biol. Conserv. 4, 111–122 (2009).

    Google Scholar 

  • 76.

    Mariac, C. et al. Species‐level ichthyoplankton dynamics for 97 fishes in two major river basins of the Amazon using quantitative metabarcoding. Mol. Ecol. https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1111%2Fmec.15944 (2021).

  • 77.

    Jackman, J. M. et al. eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environ. DNA 3, 837–849 (2021).

    Google Scholar 

  • 78.

    Bessey, C. et al. Maximizing fish detection with eDNA metabarcoding. Environ. DNA 2, 493–504 (2020).

    Google Scholar 

  • 79.

    Evans, N. T. et al. Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering. Can. J. Fish. Aquat. Sci. 74, 1362–1374 (2017).

    CAS 

    Google Scholar 

  • 80.

    Prodan, A. et al. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS One 15, e0227434 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 

    Google Scholar 

  • 82.

    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Pawluczyk, M. et al. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal. Bioanal. Chem. 407, 1841–1848 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Holman, L. E., Chng, Y. & Rius, M. How does eDNA decay affect metabarcoding experiments? Environ. DNA https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2Fedn3.201 (2021).

  • 85.

    Edgar, R. C. UNCROSS2: identification of cross-talk in 16S rRNA OTU tables. BioRxiv 400762 (2018).

  • 86.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species. (Princeton University Press, 1984).

  • 87.

    Leray, M. & Knowlton, N. Random sampling causes the low reproducibility of rare eukaryotic OTUs in Illumina COI metabarcoding. PeerJ 5, e3006 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Team, Q. D. QGIS geographic information system. Open Source Geospatial Found. Proj. Versão 2, (2015).


  • Source: Ecology - nature.com

    Energy hackers give a glimpse of a postpandemic future

    An energy-storage solution that flows like soft-serve ice cream