in

The meta-gut: community coalescence of animal gut and environmental microbiomes

Microbial community sampling

Hippo gut microbiome

We characterized the microbial communities in the hippo gut by collecting ten samples of fresh hippo feces adjacent to four hippo pools early in the morning (prior to desiccation by the sun) in September 2017. We collected feces from different pools and locations adjacent to the pool to include the feces of different individuals so we could estimate the similarity of the gut microbiome among individuals and across the landscape. The four hippo pools are sufficiently far apart that there was likely no intermixing of hippos among them.

Each individual hippo feces sample was gently homogenized by hand and then the liquid was gently squeezed from the coarse particulate organic matter. A portion of the liquid (approximately 10 mL) was vacuum filtered through a Supor polysulfone membrane (0.2-µm pore size; Pall, Port Washington, NY, USA). After approximately 10 mL had filtered through and the filter was dry, 15 mL of RNALater was gently poured onto the filter and allowed to contact the collected biomass on the filter for 15 min before being removed by filtration. The filter was stored dry in a sterile petri dish and transferred to a refrigerator within several hours, then to a − 20 °C freezer for storage within several days.

During the July 2016 survey of hippo pools, we collected an additional two samples of fresh hippo feces near a high-subsidy hippo pool and filtered approximately 10 mL of the liquid portion after homogenization as detailed above. The filter was then folded twice to preserve the biomass on the filter and stored in 14 mL of RNALater.

Aquatic ecosystem

We characterized the microbial communities in the water column of hippo pools across a gradient of hippo subsidy (July 2016, N = 12 pools). We collected samples from the upstream, downstream, surface, and bottom of both pools containing hippos and pools that lacked hippos. Subsamples were also analyzed for biogeochemical variables (details provided below). We also collected water samples in four of the high-subsidy hippo pools every 2–3 days starting immediately after a flushing event until the next flushing event (August and September 2017, Supplementary Fig. S1)23. The number of hippos, discharge and volume for each pool are presented in Dutton et al (2020)23.

We sampled the aquatic microbial community and biogeochemical variables along a longitudinal transect down both the Mara and Talek rivers (Supplementary Fig. S1, Supplementary Table S2). For the Mara River, we sampled an approximately 100-km transect along a gradient of hippo numbers (N = 10 locations, from 0 to ~ 4000 hippos). For the Talek River, we sampled an approximately 30-km transect to the confluence with the Mara (N = 8 locations, from 0 to 700 hippos). Mara River sites 9 and 10 are downstream of the confluence with the Talek River. Water samples were collected from each site in a well-mixed flowing section away from any hippo pools.

Aquatic microbial samples were collected by filtering water samples through a Supor polysulfone filter (0.2-µm pore size; Pall, Port Washington, NY, USA) and then preserving the filter in RNALater Stabilization Solution (Ambion, Inc., Austin, TX, USA). In 2017, the filters were preserved with RNA Later and then frozen for analysis.

Mesocosm experiment

We collected river water from the Mara River upstream of the distribution of hippos and placed it in 45 1-L bottles in a large water basin covered by a dark tarp to help regulate temperature and prevent algal production. Bottles were randomly assigned to the control, bacteria, and bacteria + virus treatments. We collected fresh hippo feces from multiple locations adjacent to the Mara River. After homogenization, half of the hippo feces was sterilized in a pressure cooker, which testing confirmed had similar sterilization results as an autoclave53 (see Supplementary Materials). Five grams of sterilized hippo feces was placed into each bottle to provide an organic matter substrate without viable bacteria or viruses. The unsterilized hippo feces was expressed, and the resulting liquid was filtered through 0.7-µm GF/F filters (0.7-µm pore size; Whatman, GE Healthcare Life Sciences, Pittsburgh, PA, USA) and 0.2-µm Supor filters to physically separate the bacteria (on the filter papers) from the viruses (in the filtrate). Half the filtrate was then sterilized with a UV light treatment (Supplementary Fig. S4). The UV light treatment did not significantly alter DOC quality (see Supplementary Materials).

We prepared 15 bottles for each of three treatments—control, bacteria, and bacteria + virus—as follows: Control Unfiltered river water, 5 g wet weight sterilized hippo feces, and two blank Supor filters; Bacteria Unfiltered river water, 5 g wet weight sterilized hippo feces, two Supor filters containing bacteria, and 4 mL sterilized filtrate; Virus Unfiltered river water, 5 g wet weight sterilized hippo feces, two Supor filters containing bacteria, and 4 mL unsterilized filtrate containing viruses.

We conducted the experiment for 27 days from September to October 2017. We terminated the experiment after 27 days because we were trying to replicate the microbial communities in hippo pools as best as we could and the hippo pools rarely go more than 1 month before they are flushed out by a flood25. Initial microbial samples of the river water, hippo feces bacteria and hippo fecal liquid filtrate were taken on day 0, and three replicate samples per treatment were destructively sampled on day 3, 9, 15, 21, and 27. During each time step, the microbial communities were sampled using the methods detailed above, and chemical analyses were done on the water samples as described below. We also measured chlorophyll a, dissolved oxygen, temperature, conductivity, total dissolved solids, turbidity, and pH with a Manta2 water quality sonde (Eureka Water Probes, Austin, TX, USA).

Microbial community characterization

We used 16S rRNA sequencing to characterize the active microbial communities. We extracted both DNA and RNA from our preserved samples, then used RNA to synthesize cDNA to represent the “active” microbial community and the total DNA in the sample to represent the “total” microbes present, including those that may not be actively replicating54. Due to the continual loading of hippo feces into pools and the long half-life of DNA, we would expect there to be significant quantities of microbial DNA derived from hippo feces within the pools. However, there would be less accumulation of RNA because of RNA’s shorter half-life. The active communities identified through this RNA-based approach are the ones that would potentially contribute to ecosystem function55 as indicated by the protein synthesis potential, although relationships between activity and rRNA concentrations in individual taxa within mixed communities can vary56. Nevertheless, this method provides an overall characterization of the microbial community’s potential activity.

We used the Qiagen RNeasy Powerwater Kit (Qiagen, Hilden, Germany) to extract the DNA and RNA from the material on the filter using a slightly modified manufacturer’s protocol to allow for the extraction of both DNA and RNA. After extraction, we split the total extracted volume (100 µL per sample) into two groups. We treated one group with the DNase Max Kit (Qiagen, Hilden, Germany) to remove all DNA and serve as the RNA group of samples.

We used the RNA group of samples to synthesize cDNA using the SuperScript III First Strand Synthesis Kit (Invitrogen, Carlsbad, CA, USA). DNA and cDNA were quantified using the PicoGreen dsDNA Assay Kit (Molecular Probes, Eugene, OR, USA) then normalized to 5 ng/µL. Amplicon library preparation was done using a dual-index paired-end approach57. We amplified the V4 region of the 16S rRNA gene using dual-index primers (F515/R805) and AccuPrime Pfx SuperMix (Invitrogen, Carlsbad, CA, USA) in duplicate for each sample using the manufacturer’s recommended thermocycling routine.

Samples were then pooled, purified and normalized using the SequelPrep Normalization Plate Kit (Invitrogen, Carlsbad, CA, USA). Barcoded amplicon libraries were then sequenced at the Yale Center for Genome Analysis (New Haven, CT, USA) using an Illumina Miseq v2 reagent kit (Illumina, San Diego, CA, USA) to generate 2 × 250 base pair paired-end reads.

Sampling took place in 2016 and 2017 and involved two separate sequencing runs. The first sequencing run included negative controls and a mock community (D6306, Zymo Research, Irvin, CA, USA). The second sequencing run included negative controls, a mock community (D6306), and a single E. coli strain. In both runs, the mock community and single E. coli strain were well reconstructed from the sequences, and there was minimal contamination in the negative controls, mock community and E. coli strain.

From those two sequencing campaigns, we received over 2 million raw sequences from the first campaign and over 7 million raw sequences for the second campaign. For the microbial community analyses, only samples collected and sequenced during the same campaign are analyzed together to prevent preservation or sequencing biases. However, samples within the two separate campaigns were preserved and sequenced using identical methods with only a minor modification (mentioned above) to increase the preservation of genetic material.

We de-multiplexed sequenced reads then removed barcodes, indexes, and primers using QIIME258. We used DADA2 with a standard workflow in R59 to infer exact sequence variants (ESV) for each sample60. We assigned taxonomy using a naïve Bayesian classifier and the SILVA training set v. 128 database61,62. We removed potential contamination in samples from both campaigns by using the statistical technique in the R package, decontam63. We used Phyloseq to characterize, ordinate, and compare microbial communities64 with their standard workflow59.

Chemical analyses

All water samples collected in the field and in the experiment were analyzed for dissolved ferrous iron (Fe(II)), hydrogen sulfide (H2S), dissolved organic carbon (DOC), inorganic nutrients, major ions, dissolved gases, and biochemical oxygen demand following the standard methods provided in detail in Dutton et al (2020)23.

Statistical analyses

We computed all statistical analyses in the R 4.1.1 statistical language in RStudio 2021.09.0 using α = 0.05 to determine significance65,66. Error bars in the figures represent standard deviation of the means. All data and R code for the statistics and data treatments are provided in the Mendeley Data Online Repository67.

We used the Bray–Curtis dissimilarity matrix followed by ordination with NMDS to examine differences between individual hippo gut microbiomes; between low-, medium-, and high-subsidy hippo pools; and between a gradient of hippo pools and the environment. We used a CCA to test for the influence of biogeochemical drivers on microbial community composition using biogeochemical data that were previously published but collected concurrently with this study23. We constrained the CCA ordination by soluble reactive phosphorus, nitrate, methane, BOD, and sulfate, which were all previously shown to be important drivers in the variation between pools23. We used PERMANOVA and PERMDISP to test for significant differences between groups68.

We compared aquatic microbial communities from the bottom of high-subsidy hippo pools (N = 15), from hippo feces (N = 10, the hippo gut microbiome) and upstream of high-subsidy hippo pools (N = 15, free of hippo gut microbiome influence) using the Bray–Curtis dissimilarity matrix on the relative abundances for the active aquatic microbial communities collected from the different sample types followed by ordination with NMDS. 95% confidence ellipses were generated. We then determined the active taxa that were shared between the hippo gut microbiome (hippo feces) and the bottom of the high-subsidy hippo pools and not present in the upstream samples from high-subsidy hippo pools.

We used LEfSe to calculate the differential abundance of microbial taxa between upstream (N = 14), downstream (N = 16), at the surface (N = 17) and at the bottom (N = 14) of hippo pools and calculated their effect size69. We then calculated the correlation of microbial taxa to the measured biogeochemistry using Pearson’s correlation coefficient with a false discovery rate corrected p-value in the microeco R package70.

We used SourceTracker to quantify the contribution of the hippo gut, upstream waters, or unknown sources to the active aquatic microbial communities in the bottom waters of three of the high-subsidy hippo pools between flushing flows71. We also used the Bray–Curtis dissimilarity matrix followed by ordination with NMDS to examine changes in the active aquatic microbial communities in one of the high subsidy hippo pools through time after flushing flows.

For the experiment, we calculated the Bray–Curtis dissimilatory matrix followed by ordination with NMDS for the active aquatic microbial communities over time in each of the three experimental treatments. We used SourceTracker to determine the proportion of the active aquatic microbial community in each treatment that originated from the hippo gut, the river water, or unknown sources71. We analyzed the biogeochemical differences among experimental treatments by fitting a linear mixed effects model for each of the biogeochemical variables throughout the experiment with the nlme package in R72. We fit the model with the restricted maximum likelihood method and a continuous autoregressive temporal correlation structure with sample day as the repeated factor. Treatment and time were fixed effects and individual bottles were treated as random effects. We conducted a pairwise post-hoc test with an ANOVA and the emmeans package in R to estimate marginal means with a Tukey adjusted p-value for multiple comparisons73,74.


Source: Ecology - nature.com

Energy hackers give a glimpse of a postpandemic future

An energy-storage solution that flows like soft-serve ice cream