Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. S. 16, 269–311 (1985).
Schmitz, O. J. et al. From individuals to ecosystem function: Toward an integration of evolutionary and ecosystem ecology. Ecology 89, 2436–2445 (2008).
Google Scholar
Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).
Google Scholar
Holt, R. D. Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).
Google Scholar
Bonsall, M. B. & Hassell, M. P. Apparent competition structures ecological assemblages. Nature 388, 371–373 (1997).
Google Scholar
Tuda, M. & Shimada, M. Complexity, evolution, and persistence in host–parasitoid experimental systems with Callosobruchus beetles as the host. Adv. Ecol. Res. 37, 37–75 (2005).
Briggs, C. J., Nisbet, R. M. & Murdoch, W. W. Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. 44, 341–373 (1993).
Google Scholar
Peri, E., Cusumano, A., Amodeo, V., Wajnberg, E. & Colazza, S. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLoS ONE 9, e99876 (2014).
Google Scholar
Pekas, A., Tena, A., Harvey, J. A., Garcia-Marí, F. & Frago, E. Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 97, 1345–1356 (2016).
Google Scholar
DeLong, J. P. & Vasseur, D. A. Mutual interference is common and mostly intermediate in magnitude. BMC Ecol. 11, 1 (2011).
Google Scholar
Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).
Google Scholar
Hassell, M. P. Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971).
Charnov, E. L., Orians, G. H. & Hyatt, K. Ecological implications of resource depression. Am. Nat. 110, 247–259 (1976).
Free, C. A., Beddington, J. R. & Lawton, J. H. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).
Visser, M. E., Jones, T. H. & Driessen, G. Interference among insect parasitoids: A multi-patch experiment. J. Anim. Ecol. 68, 108–120 (1999).
Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).
DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for trophic interaction. Ecology 56, 881–892 (1975).
Arditi, R., Callois, J. M., Tyutyunov, Y. & Jost, C. Does mutual interference always stability predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).
Google Scholar
Abrams, P. A. Why ratio dependence is (still) a bad model of predation. Biol. Rev. 90, 794–814 (2015).
Google Scholar
Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism, and niche overlap. J. Appl. Ecol. 41, 973–984 (2004).
Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. B 269, 2550–2641 (2002).
Mohamad, R., Wajnberg, E., Monge, J. P. & Goubault, M. The effect of direct interspecific competition on patch exploitation strategies in parasitoid wasps. Oecologia 177, 305–315 (2015).
Google Scholar
Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2004).
Nakamichi, Y., Tuda, M. & Wajnberg, E. Intraspecific interference between native parasitoids modified by a non-native parasitoid and its consequence on population dynamics. Ecol. Entomol. 45, 1263–1271 (2020).
Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).
Google Scholar
Appleby, B. M., Petty, S. J., Blakey, J. K., Rainey, P. & Macdonald, D. W. Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco)?. Proc. R. Soc. B 264, 1111–1116 (1997).
Google Scholar
Nishimura, K. & Jahn, G. C. Sex allocation of three solitary ectoparasitic wasp species on bean weevil larvae: Sex ratio change with host quality and local mate competition. J. Ethol. 14, 27–33 (1996).
Shimada, M. & Fujii, K. Niche modification and stability of competitive systems. I. Niche modification process. Res. Popul. Ecol. 27, 185–201 (1985).
Utida, S. Population fluctuation, an experimental and theoretical approach. Cold Spring Harb. Symp. Quant. Biol. 22, 139–151 (1957).
Utida, S. Cyclic fluctuations of population density intrinsic to the host–parasitoid system. Ecology 38, 442–449 (1957).
Fujii, K. Studies on the interspecies competition between the azuki bean weevil and the southern cowpea weevil. III. Some characteristics of strains of two species. Res. Popul. Ecol. 10, 87–98 (1968).
Bellows, T. S. Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera, Bruchidae). J. Anim. Ecol. 51, 263–287 (1982).
Tuda, M. Density dependence depends on scale; at larval resource patch and at whole population. Res. Popul. Ecol. 35, 261–271 (1993).
Tuda, M. & Shimada, M. Developmental schedules and persistence of experimental host–parasitoid systems at two different temperatures. Oecologia 103, 283–291 (1995).
Google Scholar
Tuda, M., Chou, L.-Y., Niyomdham, C., Buranapanichpan, S. & Tateishi, Y. Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): High host specificity of non-pests to Cajaninae (Fabaceae). J. Stored Prod. Res. 41, 31–45 (2005).
Tuda, M., Rönn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).
Google Scholar
Tuda, M. Applied evolutionary ecology of insects in the subfamily Bruchinae (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 42, 337–346 (2007).
Clausen, C. P. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review (United States Department of Agriculture Handbook, 1978).
Schmale, I., Wäckers, F. L., Cardona, C. & Dorn, S. Control potential of three hymenopteran parasitoid species against the bean weevil in stored beans: The effect of adult parasitoid nutrition on longevity and progeny production. Biol. Control 21, 134–139 (2001).
Vamosi, S. M., den Hollander, M. D. & Tuda, M. Egg dispersion is more important than competition type for herbivores attacked by a parasitoid. Popul. Ecol. 53, 319–326 (2011).
Shimada, M. Population fluctuation and persistence of one-host–two parasitoid systems depending on resource distribution: From parasitizing behavior to population dynamics. Res. Popul. Ecol. 41, 69–79 (1999).
Baker, J. E., Perez-Mendoza, J. & Beeman, R. W. Multiple mating potential in a pteromalid wasp determined by using an insecticide resistance marker. J. Entomol. Sci. 33, 165–170 (1998).
Yamamura, K. Transformation using (x + 0.5) to stabilize the variance of populations. Res. Popul. Ecol. 41, 229–234 (1999).
Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).
Google Scholar
Waage, J. K. & Lane, J. B. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Behav. 53, 417–426 (1984).
Strand, M. R. Variable sex ratio strategy of Telonomus heliothidis (Hymenoptera: Scelionidae): Adaptation to host and conspecific density. Oecologia 77, 219–224 (1988).
Google Scholar
Hassell, M. P. The Dynamics of Arthropod Predator-Prey Systems (Princeton University Press, 1978).
Google Scholar
Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).
Wen, B., Smith, L. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature maize weevils (Coleoptera: Curculionidae) in corn. Environ. Entomol. 23, 367–373 (1994).
Wen, B. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature rice weevils (Coleoptera: Curculionidae) in wheat. Biol. Control 5, 151–157 (1995).
Campan, E. & Benrey, B. Behavior and performance of a specialist and a generalist parasitoid of bruchids on wild and cultivated beans. Biol. Control 30, 220–228 (2004).
Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).
Wai, K. M. Intra- and interspecific larval competition among wasps parasitic to bean weevil larvae. Thesis—University of Tsukuba, D.Sc. (A), no. 714 (1990).
Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37 (2018).
Miksanek, J. R. & Heimpel, G. E. Density-dependent lifespan and estimation of life expectancy for a parasitoid with implications for population dynamics. Oecologia 194, 311–320 (2020).
Google Scholar
Kidd, N. A. C. & Jervis, M. A. The effects of host-feeding behaviour on the dynamics of parasitoid–host interactions, and the implications for biological control. Res. Popul. Ecol. 31, 235–274 (1989).
Comins, H. N. & Wellings, P. W. Density-related parasitoid sex-ratio: Influence on host–parasitoid population dynamics. J. Anim. Ecol. 54, 583–594 (1985).
Hassell, M. P., Waage, J. K. & May, R. M. Variable parasitoid sex ratios and their effect on host–parasitoid dynamics. J. Anim. Ecol. 52, 889–904 (1983).
Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling Type II model. Ecology 82, 3083–3092 (2001).
Kratina, P., Vos, M., Bateman, A. & Anholt, B. R. Functional responses modified by predator density. Oecologia 159, 425–433 (2008).
Google Scholar
Freedman, H. I. Stability analysis of a predator–prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979).
Google Scholar
Erbe, L. H. & Freedman, H. I. Modeling persistence and mutual interference among subpopulations of ecological communities. Bull. Math. Biol. 47, 295–304 (1985).
Google Scholar
Alonso, D., Bartumeus, F. & Catalan, J. Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28–34 (2002).
May, R. M. & Hassell, M. P. The dynamics of multiparasitoid–host interactions. Am. Nat. 117, 234–261 (1981).
Google Scholar
Wajnberg, E., Curty, C. & Colazza, S. Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. J. Anim. Ecol. 73, 1179–1189 (2004).
Okuyama, T. Parasitoid aggregation and interference in host–parasitoid dynamics. Ecol. Entomol. 41, 473–479 (2016).
Jeffs, C. T. & Lewis, O. T. Effects of climate warming on host–parasitoid interactions. Ecol. Entomol. 38, 209–218 (2013).
Laws, A. N. Climate change effects on predator–prey interactions. Curr. Opin. Insect Sci. 23, 28–34 (2017).
Google Scholar
Tougeron, K., Brodeur, J., Le Lann, C. & van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 45, 167–181 (2020).
Tuda, M. & Bonsall, M. B. Evolutionary and population dynamics of host–parasitoid interactions. Res. Popul. Ecol. 41, 81–91 (1999).
Outreman, Y. et al. Multi-scale and antagonist selection on life-history traits in parasitoids: A community ecology perspective. Funct. Ecol. 32, 736–751 (2018).
Source: Ecology - nature.com