in

Ecological changes have driven biotic exchanges across the Indian Ocean

  • 1.

    Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267 (2013).

    ADS 

    Google Scholar 

  • 2.

    Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • 3.

    Ashwal, L. D., Wiedenbeck, M. & Torsvik, T. H. Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius. Nat. Commun. 8, 14086 (2017).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 4.

    Agnarsson, I. & Kuntner, M. The Generation of a biodiversity hotspot: Biogeography and phylogeography of the Western Indian Ocean islands. In Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems (ed. Anamthawat-Jónsson, K.) 33–82 (InTech, 2012).

    Google Scholar 

  • 5.

    Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41 (2012).

    ADS 

    Google Scholar 

  • 6.

    Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1–33 (2013).

    ADS 

    Google Scholar 

  • 7.

    Aitchison, J. C., Ali, J. R. & Davis, A. M. When and where did India and Asia collide?. JGR https://doi.org/10.1029/2006JB004706 (2007).

    Article 

    Google Scholar 

  • 8.

    Chatterjee, S. & Scotese, C. R. The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period. In New Aspects of Mesozoic Biodiversity (ed. Bandyopadhyay, S.) (Springer-Verlag, 2010).

    Google Scholar 

  • 9.

    Gourlan, A. T., Meynadier, L. & Allègre, C. J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence. Earth Planet. Sci. Lett. 267, 353–364 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).

    ADS 

    Google Scholar 

  • 11.

    Collier, J. S. et al. Age of Seychelles-India break-up. Earth Planet. Sci. Lett. 272, 264–277 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Plummer, Ph. S. & Belle, E. R. Mesozoic tectono-stratigraphic evolution of the Seychelles microcontinent. Sediment. Geol. 96, 73–91 (1995).

    ADS 

    Google Scholar 

  • 13.

    Ashalatha, B., Subrahmanyam, C. & Singh, R. N. Origin and compensation of Chagos-Laccadive ridge, Indian ocean, from admittance analysis of gravity and bathymetry data. Earth Planet. Sci. Lett. 105, 47–54 (1991).

    ADS 

    Google Scholar 

  • 14.

    de Queiroz, A. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73 (2005).

    PubMed 

    Google Scholar 

  • 15.

    Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).

    PubMed 

    Google Scholar 

  • 16.

    Verma, O., Khosla, A., Goin, F. J. & Kaur, J. Historical biogeography of the late cretaceous vertebrates of India: Comparison of geophysical and paleontological data. New Mex. Mus. Nat. Hist. Sci. Bull. 71, 317–330 (2016).

    Google Scholar 

  • 17.

    Krause, D. W. Washed up in Madagascar. Nature 463, 613 (2010).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 18.

    Reeves, C. & De Wit, M. Making ends meet in Gondwana: Retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova 12, 272–280 (2000).

    ADS 

    Google Scholar 

  • 19.

    Pillon, Y. & Buerki, S. How old are island endemics?. Biol. J. Linn. Soc. 121, 469–474 (2017).

    Google Scholar 

  • 20.

    Thornton, I. W. B. et al. How important were stepping stones in the colonization of Krakatau?. Biol. J. Linn. Soc. 77, 275–317 (2002).

    Google Scholar 

  • 21.

    Crisp, M. D., Trewick, S. A. & Cook, L. G. Hypothesis testing in biogeography. Trends Ecol. Evol. 26, 66–72 (2011).

    PubMed 

    Google Scholar 

  • 22.

    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).

    PubMed 
    CAS 

    Google Scholar 

  • 24.

    Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R. R. Evolutionary rates and HBV: Issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).

    PubMed 

    Google Scholar 

  • 25.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Meth. 9, 772–772 (2012).

    CAS 

    Google Scholar 

  • 26.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 27.

    Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536 (1997).

    Google Scholar 

  • 28.

    Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Raftery, A. et al. Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. Bayesian Stat. 8, 1–45 (2007).

    Google Scholar 

  • 30.

    Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006).

    CAS 

    Google Scholar 

  • 31.

    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772–780 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 32.

    Erpenbeck, D. et al. Phylogenetic analyses under secondary structure-specific substitution models outperform traditional approaches: Case studies with diploblast LSU. J. Mol. Evol. 64, 543–557 (2007).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 33.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), 2010 1–8 (2010).

  • 34.

    Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49 (2015).

    PubMed 

    Google Scholar 

  • 35.

    Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 19694 (2013).

    Google Scholar 

  • 36.

    Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).

    PubMed 

    Google Scholar 

  • 37.

    Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Warren, B. H., Strasberg, D., Bruggemann, J. H., Prys-Jones, R. P. & Thébaud, C. Why does the biota of the Madagascar region have such a strong Asiatic flavour?. Cladistics 26, 526–538 (2010).

    Google Scholar 

  • 39.

    Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bull. 107, 1164–1191 (1995).

    Google Scholar 

  • 40.

    Yoder, A. D. & Nowak, M. D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 37, 405–431 (2006).

    Google Scholar 

  • 41.

    Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. PNAS 109, 5358–5363 (2012).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 42.

    Ali, J. R. & Krause, D. W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: Refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 38, 1855–1872 (2011).

    Google Scholar 

  • 43.

    Kocsis, Á. T. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 213, 103463 (2021).

    Google Scholar 

  • 44.

    Hay, W. W. Cretaceous oceans and ocean modeling. In Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance (eds Hu, X. et al.) 244–271 (Sepm Society for Sedimentary, 2009).

    Google Scholar 

  • 45.

    Sereno, P. C., Wilson, J. A. & Conrad, J. L. New dinosaurs link southern landmasses in the Mid-Cretaceous. Proc. R. Soc. Lond. B 271, 1325–1330 (2004).

    Google Scholar 

  • 46.

    Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234 (2018).

    Google Scholar 

  • 47.

    Speijer, R. P. & Morsi, A.-M.M. Ostracode turnover and sea-level changes associated with the Paleocene-Eocene thermal maximum. Geology 30, 23–26 (2002).

    ADS 

    Google Scholar 

  • 48.

    McInerney, F. A. & Wing, S. L. The paleocene-eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Henehan, M. J. et al. Revisiting the middle eocene climatic optimum “Carbon Cycle Conundrum” with new estimates of atmospheric pCO2 from boron isotopes. Palaeogeogr. Palaeoclimatol. 35, e2019PA003713 (2020).

    Google Scholar 

  • 50.

    Legendre, S. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: Structures, milieux et évolution. Münchner Geowiss. Abh. 16, 1–110 (1989).

    Google Scholar 

  • 51.

    Hartenberger, J.-L. Palaeontology: An Asian Grande Coupure. Nature 394, 321 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 53.

    Lohman, D. J. et al. Biogeography of the Indo-Australian Archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).

    Google Scholar 

  • 54.

    Fernández, D. A., Palazzesi, L., González Estebenet, M. S., Tellería, M. C. & Barreda, V. D. Impact of mid Eocene greenhouse warming on America’s southernmost floras. Commun. Biol. 4, 1–9 (2021).

    Google Scholar 

  • 55.

    Ivany, L. C., Patterson, W. P. & Lohmann, K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 56.

    Masters, J. C. et al. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. J. Biogeogr. 48, 492–510 (2021).

    Google Scholar 

  • 57.

    Ali, J. R. & Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656 (2010).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 58.

    Ohba, M., Samonds, K. E., LaFleur, M., Ali, J. R. & Godfrey, L. R. Madagascar’s climate at the K/P boundary and its impact on the island’s biotic suite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 688–695 (2016).

    Google Scholar 

  • 59.

    Godfrey, L. R. et al. Mid-Cenozoic climate change, extinction, and faunal turnover in Madagascar, and their bearing on the evolution of lemurs. BMC Evol. Biol. 20, 97 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Behrensmeyer, A. K. et al. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (University of Chicago Press, 1992).

    Google Scholar 

  • 61.

    Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci. Rev. 88, 145–166 (2008).

    ADS 

    Google Scholar 

  • 62.

    Klaus, S., Morley, R. J., Plath, M., Zhang, Y.-P. & Li, J.-T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 (2016).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 63.

    Le Houedec, S., Meynadier, L., Cogné, J.-P., Allègre, C. J. & Gourlan, A. T. Oceanwide imprint of large tectonic and oceanic events on seawater Nd isotope composition in the Indian Ocean from 90 to 40 Ma. Geochem. Geophys. 13, 6. https://doi.org/10.1029/2011GC003963 (2012).

    Article 
    CAS 

    Google Scholar 

  • 64.

    Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697 (2009).

    PubMed 

    Google Scholar 

  • 65.

    Kayaalp, P., Stevens, M. I. & Schwarz, M. P. ‘Back to Africa’: Increased taxon sampling confirms a problematic Australia-to-Africa bee dispersal event in the Eocene. Syst. Entomol. 42, 724–733 (2017).

    Google Scholar 

  • 66.

    Gillespie, R. G. et al. Long-distance dispersal: A framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists and musicians tackle climate change together

    Climate modeling confirms historical records showing rise in hurricane activity