Galbraith, S. M., Griswold, T., Price, W. J. & Bosque-Pérez, N. A. Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics. J. Insect Conserv. https://doi.org/10.1007/s10841-020-00274-8 (2020).
Google Scholar
Imbach, P. et al. Climate change, ecosystems and smallholder agriculture in Central America: An introduction to the special issue. Clim. Change 141, 1–12 (2017).
HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts?. Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).
Google Scholar
Butt, N. et al. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Chang. Biol. 21, 3267–3277 (2015).
Google Scholar
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
Google Scholar
Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451-458.e4 (2021).
Google Scholar
Bezerra, E. S., Lopes, A. V. & Machado, I. C. Biologia reprodutiva de Byrsonima gardnerana A. Juss. (Malpighiaceae) e interações com abelhas Centris (Centridini) no Nordeste do Brasil. Rev. Bras. Bot. 32, 95–108 (2009).
Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2019.12.010 (2020).
Google Scholar
Hoiss, B., Krauss, J. & Steffan-Dewenter, I. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks. Glob. Chang. Biol. 21, 4086–4097 (2015).
Google Scholar
Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).
Google Scholar
Classen, A. et al. Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania?. Glob. Ecol. Biogeogr. 24, 642–652 (2015).
Ramos-Jiliberto, R. et al. Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
Dellinger, A. S. et al. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytol. https://doi.org/10.1111/nph.17390 (2021).
Google Scholar
González-Vanegas, P. A., Rös, M., García-Franco, J. G. & Aguirre-Jaimes, A. Buzz-pollination in a tropical montane cloud forest: Compositional similarity and plant-pollinator interactions. Neotrop. Entomol. https://doi.org/10.1007/s13744-021-00867-1 (2021).
Google Scholar
Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: A systematic review. PLoS ONE 8, 1–11 (2013).
García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U. S. A. 113, 680–685 (2016).
Google Scholar
Sheldon, K. S. Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 50, 303–333 (2019).
McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).
Google Scholar
Aguilar, I., Herrera, E. & Zamora, G. Stingless bees of Costa Rica. Pot-Honey https://doi.org/10.1007/978-1-4614-4960-7 (2012).
Google Scholar
Köppler, K., Vorwohl, G. & Koeniger, N. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 38, 341–353 (2007).
Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
Ortiz-Mora, R. A., Van Veen, J. W., Corrales, G. & Sommeijer, M. J. Influence of altitude on the distribution of stingless bees (Hymenoptera Apidae: Meliponinae). Apiacta 30, 101–105 (1995).
Michener, C. D. The Bees of the World (The Johns Hopkins University Press, 2007).
Rehan, S. M., Tierney, S. M. & Wcislo, W. T. Evidence for social nesting in Neotropical ceratinine bees. Insectes Soc. 62, 465–469 (2015).
Gonzalez, V. H. et al. Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecol. Entomol. 45, 688–696 (2020).
Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
Google Scholar
Theobald, E. J., Gabrielyan, H. & HilleRisLambers, J. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range. Am. J. Bot. 103, 189–197 (2016).
Google Scholar
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
Google Scholar
Bode, R. F., Linhart, R. D. & Dufresne, C. Variation in the pollinator community visiting invasive Cytisus scoparius L. Link (Fabaceae) along an elevation gradient. Arthropod. Plant. Interact. https://doi.org/10.1007/s11829-020-09755-8 (2020).
Google Scholar
Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).
Google Scholar
Dymond, K. et al. The role of insect pollinators in avocado production: A global review. J. Appl. Entomol. https://doi.org/10.1111/jen.12869 (2021).
Google Scholar
Giannini, T. C. et al. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst. Environ. 171, 39–46 (2013).
Ashworth, L., Quesada, M., Casas, A., Aguilar, R. & Oyama, K. Pollinator-dependent food production in Mexico. Biol. Conserv. 142, 1050–1057 (2009).
Tepedino, V. J. The Pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377 (1981).
Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).
Barrantes, G. The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and western Panamá. Rev. Biol. Trop. 57, 333–346 (2009).
Macedo, M. V. et al. Insect elevational specialization in a tropical biodiversity hotspot. Insect Conserv. Divers. 11, 240–254 (2018).
Frankie, G. W. et al. Diversity and abundance of bees visiting a mass flowering tree species in disturbed seasonal dry forest, Costa Rica. Kansas Entomol. Soc. 70, 281–296 (1997).
Heard, T. A. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).
Google Scholar
Abrol, D. P. Wild bees and crop pollination. In Pollination Biology: Biodiversity Conservation and Agricultural Production 111–184 (Springer, 2012).
Tucker, E. M. & Rehan, S. M. Farming for bees: Annual variation in pollinator populations across agricultural landscapes. Agric. For. Entomol. 20, 541–548 (2018).
Peters, V. E., Mordecai, R., Carroll, C. R., Cooper, R. J. & Greenberg, R. Bird community response to fruit energy. J. Anim. Ecol. 79, 824–835 (2010).
Google Scholar
Baker, C. P. Moon Costa Rica (Moon Travel, 2007).
Hinton, C. R. & Peters, V. E. Plant species with the trait of continuous flowering do not hold core roles in a Neotropical lowland plant-pollinating insect network. Ecol. Evol. 11, 2346–2359 (2021).
Google Scholar
Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera, Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).
Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Museum Nat. Hist. 3296, 1–11 (2000).
Calfee, E., Agra, M. N., Palacio, M. A., Ramírez, S. R. & Coop, G. Selection and hybridization shaped the Africanized honey bee invasion of the Americas. bioRxiv https://doi.org/10.1101/2020.03.17.994632 (2020).
Google Scholar
Davila, Y. C. & Wardle, G. M. Variation in native pollinators in the absence of honeybees: Implications for reproductive success of an Australian generalist-pollinated herb Trachymene incisa (Apiaceae). Bot. J. Linn. Soc. 156, 479–490 (2008).
Chen, H., Morrell, P. L., Ashworth, V. E. T. M., De La Cruz, M. & Clegg, M. T. Tracing the geographic origins of major avocado cultivars. J. Hered. 100, 56–65 (2009).
Google Scholar
Bender, G. S. Avocado flowering and pollination. Avocado Prod. Calif. 1, 39–49 (2002).
Google Scholar
Bergh, B. O. The remarkable avocado flower. Calif. Avocado Soc. Yearb. 57, 40–41 (1973).
Wilson, H. D. Gene flow in squash species. Bioscience 40, 449–455 (1990).
Hurd, P. D., Linsley, E. G. & Whitaker, T. W. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234 (1971).
Google Scholar
Willis, S. D. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
Gómez-Escobar, E., Liedo, P., Montoya, P., Vandame, R. & Sánchez, D. Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J. Econ. Entomol. 107, 1447–1449 (2014).
Google Scholar
Jarau, S. & Barth, F. G. Stingless bees of the Golfo Dulce region, Costa Rica (Hymenoptera, Apidae, Apinae, Meliponini). Stapfia 88, 267–276 (2008).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. (2018).
Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Google Scholar
Salim, H. M. W. et al. Stingless bee (Hymenoptera: Apidae: Meliponini) diversity in dipterocarp forest reserves in Peninsular Malaysia. Raffles Bull. Zool. 60, 213–219 (2012).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Baselga, A. et al. Partitioning Beta Diversity into Turnover and Nestedness Components (Wiley, 2021).
Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2, 1–295 (2013).
Wang, Y. et al. Statistical Methods for Analysing Multivariate Abundance Data. (2021).
Kindt, R. & Coe, R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies (World Agroforestry Centre (ICRAF), 2005).
Source: Ecology - nature.com