in

Tropical bee species abundance differs within a narrow elevational gradient

  • 1.

    Galbraith, S. M., Griswold, T., Price, W. J. & Bosque-Pérez, N. A. Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics. J. Insect Conserv. https://doi.org/10.1007/s10841-020-00274-8 (2020).

    Article 

    Google Scholar 

  • 2.

    Imbach, P. et al. Climate change, ecosystems and smallholder agriculture in Central America: An introduction to the special issue. Clim. Change 141, 1–12 (2017).

    Google Scholar 

  • 3.

    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts?. Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).

    PubMed 

    Google Scholar 

  • 4.

    Butt, N. et al. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Chang. Biol. 21, 3267–3277 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • 5.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451-458.e4 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Bezerra, E. S., Lopes, A. V. & Machado, I. C. Biologia reprodutiva de Byrsonima gardnerana A. Juss. (Malpighiaceae) e interações com abelhas Centris (Centridini) no Nordeste do Brasil. Rev. Bras. Bot. 32, 95–108 (2009).

    Google Scholar 

  • 8.

    Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2019.12.010 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Hoiss, B., Krauss, J. & Steffan-Dewenter, I. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks. Glob. Chang. Biol. 21, 4086–4097 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • 10.

    Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).

    MathSciNet 

    Google Scholar 

  • 11.

    Classen, A. et al. Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania?. Glob. Ecol. Biogeogr. 24, 642–652 (2015).

    Google Scholar 

  • 12.

    Ramos-Jiliberto, R. et al. Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).

    Google Scholar 

  • 13.

    Dellinger, A. S. et al. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytol. https://doi.org/10.1111/nph.17390 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    González-Vanegas, P. A., Rös, M., García-Franco, J. G. & Aguirre-Jaimes, A. Buzz-pollination in a tropical montane cloud forest: Compositional similarity and plant-pollinator interactions. Neotrop. Entomol. https://doi.org/10.1007/s13744-021-00867-1 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: A systematic review. PLoS ONE 8, 1–11 (2013).

    Google Scholar 

  • 16.

    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U. S. A. 113, 680–685 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Sheldon, K. S. Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 50, 303–333 (2019).

    Google Scholar 

  • 18.

    McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).

    PubMed 

    Google Scholar 

  • 19.

    Aguilar, I., Herrera, E. & Zamora, G. Stingless bees of Costa Rica. Pot-Honey https://doi.org/10.1007/978-1-4614-4960-7 (2012).

    Article 

    Google Scholar 

  • 20.

    Köppler, K., Vorwohl, G. & Koeniger, N. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 38, 341–353 (2007).

    Google Scholar 

  • 21.

    Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).

    Google Scholar 

  • 22.

    Ortiz-Mora, R. A., Van Veen, J. W., Corrales, G. & Sommeijer, M. J. Influence of altitude on the distribution of stingless bees (Hymenoptera Apidae: Meliponinae). Apiacta 30, 101–105 (1995).

    Google Scholar 

  • 23.

    Michener, C. D. The Bees of the World (The Johns Hopkins University Press, 2007).

    Google Scholar 

  • 24.

    Rehan, S. M., Tierney, S. M. & Wcislo, W. T. Evidence for social nesting in Neotropical ceratinine bees. Insectes Soc. 62, 465–469 (2015).

    Google Scholar 

  • 25.

    Gonzalez, V. H. et al. Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecol. Entomol. 45, 688–696 (2020).

    Google Scholar 

  • 26.

    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    PubMed 

    Google Scholar 

  • 27.

    Theobald, E. J., Gabrielyan, H. & HilleRisLambers, J. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range. Am. J. Bot. 103, 189–197 (2016).

    PubMed 

    Google Scholar 

  • 28.

    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Bode, R. F., Linhart, R. D. & Dufresne, C. Variation in the pollinator community visiting invasive Cytisus scoparius L. Link (Fabaceae) along an elevation gradient. Arthropod. Plant. Interact. https://doi.org/10.1007/s11829-020-09755-8 (2020).

    Article 

    Google Scholar 

  • 30.

    Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).

    PubMed 

    Google Scholar 

  • 31.

    Dymond, K. et al. The role of insect pollinators in avocado production: A global review. J. Appl. Entomol. https://doi.org/10.1111/jen.12869 (2021).

    Article 

    Google Scholar 

  • 32.

    Giannini, T. C. et al. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst. Environ. 171, 39–46 (2013).

    Google Scholar 

  • 33.

    Ashworth, L., Quesada, M., Casas, A., Aguilar, R. & Oyama, K. Pollinator-dependent food production in Mexico. Biol. Conserv. 142, 1050–1057 (2009).

    Google Scholar 

  • 34.

    Tepedino, V. J. The Pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377 (1981).

    Google Scholar 

  • 35.

    Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).

    Google Scholar 

  • 36.

    Barrantes, G. The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and western Panamá. Rev. Biol. Trop. 57, 333–346 (2009).

    Google Scholar 

  • 37.

    Macedo, M. V. et al. Insect elevational specialization in a tropical biodiversity hotspot. Insect Conserv. Divers. 11, 240–254 (2018).

    Google Scholar 

  • 38.

    Frankie, G. W. et al. Diversity and abundance of bees visiting a mass flowering tree species in disturbed seasonal dry forest, Costa Rica. Kansas Entomol. Soc. 70, 281–296 (1997).

    Google Scholar 

  • 39.

    Heard, T. A. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Abrol, D. P. Wild bees and crop pollination. In Pollination Biology: Biodiversity Conservation and Agricultural Production 111–184 (Springer, 2012).

    Google Scholar 

  • 41.

    Tucker, E. M. & Rehan, S. M. Farming for bees: Annual variation in pollinator populations across agricultural landscapes. Agric. For. Entomol. 20, 541–548 (2018).

    Google Scholar 

  • 42.

    Peters, V. E., Mordecai, R., Carroll, C. R., Cooper, R. J. & Greenberg, R. Bird community response to fruit energy. J. Anim. Ecol. 79, 824–835 (2010).

    PubMed 

    Google Scholar 

  • 43.

    Baker, C. P. Moon Costa Rica (Moon Travel, 2007).

    Google Scholar 

  • 44.

    Hinton, C. R. & Peters, V. E. Plant species with the trait of continuous flowering do not hold core roles in a Neotropical lowland plant-pollinating insect network. Ecol. Evol. 11, 2346–2359 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera, Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).

    Google Scholar 

  • 46.

    Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Museum Nat. Hist. 3296, 1–11 (2000).

    Google Scholar 

  • 47.

    Calfee, E., Agra, M. N., Palacio, M. A., Ramírez, S. R. & Coop, G. Selection and hybridization shaped the Africanized honey bee invasion of the Americas. bioRxiv https://doi.org/10.1101/2020.03.17.994632 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Davila, Y. C. & Wardle, G. M. Variation in native pollinators in the absence of honeybees: Implications for reproductive success of an Australian generalist-pollinated herb Trachymene incisa (Apiaceae). Bot. J. Linn. Soc. 156, 479–490 (2008).

    Google Scholar 

  • 49.

    Chen, H., Morrell, P. L., Ashworth, V. E. T. M., De La Cruz, M. & Clegg, M. T. Tracing the geographic origins of major avocado cultivars. J. Hered. 100, 56–65 (2009).

    PubMed 

    Google Scholar 

  • 50.

    Bender, G. S. Avocado flowering and pollination. Avocado Prod. Calif. 1, 39–49 (2002).

    ADS 

    Google Scholar 

  • 51.

    Bergh, B. O. The remarkable avocado flower. Calif. Avocado Soc. Yearb. 57, 40–41 (1973).

    Google Scholar 

  • 52.

    Wilson, H. D. Gene flow in squash species. Bioscience 40, 449–455 (1990).

    Google Scholar 

  • 53.

    Hurd, P. D., Linsley, E. G. & Whitaker, T. W. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234 (1971).

    PubMed 

    Google Scholar 

  • 54.

    Willis, S. D. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).

    Google Scholar 

  • 55.

    Gómez-Escobar, E., Liedo, P., Montoya, P., Vandame, R. & Sánchez, D. Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J. Econ. Entomol. 107, 1447–1449 (2014).

    PubMed 

    Google Scholar 

  • 56.

    Jarau, S. & Barth, F. G. Stingless bees of the Golfo Dulce region, Costa Rica (Hymenoptera, Apidae, Apinae, Meliponini). Stapfia 88, 267–276 (2008).

    Google Scholar 

  • 57.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 58.

    Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. (2018).

  • 59.

    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).

  • 60.

    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 

    Google Scholar 

  • 61.

    Salim, H. M. W. et al. Stingless bee (Hymenoptera: Apidae: Meliponini) diversity in dipterocarp forest reserves in Peninsular Malaysia. Raffles Bull. Zool. 60, 213–219 (2012).

    MathSciNet 

    Google Scholar 

  • 62.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    Google Scholar 

  • 63.

    Baselga, A. et al. Partitioning Beta Diversity into Turnover and Nestedness Components (Wiley, 2021).

    Google Scholar 

  • 64.

    Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2, 1–295 (2013).

    Google Scholar 

  • 65.

    Wang, Y. et al. Statistical Methods for Analysing Multivariate Abundance Data. (2021).

  • 66.

    Kindt, R. & Coe, R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies (World Agroforestry Centre (ICRAF), 2005).

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Tolga Durak on building a safety culture at MIT

    Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production