in

Decadal shifts in traits of reef fish communities in marine reserves

  • 1.

    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Google Scholar 

  • 2.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Lester, S. E. et al. Biological effects within no-take marine reserves: A global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    ADS 

    Google Scholar 

  • 4.

    Brandl, S. J., Emslie, M. J. & Ceccarelli, D. M. Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7, e01557 (2016).

    Google Scholar 

  • 5.

    Ramírez-Ortiz, G. et al. Reduced fish diversity despite increased fish biomass in a Gulf of California Marine Protected Area. PeerJ 2020, e8885 (2020).

    Google Scholar 

  • 6.

    Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating biological traits into conservation. Strategies https://doi.org/10.1146/annurev-marine-032320 (2021).

    Article 

    Google Scholar 

  • 7.

    Coleman, M. A. et al. Functional traits reveal early responses in marine reserves following protection from fishing. Divers. Distrib. 21, 876–887 (2015).

    ADS 

    Google Scholar 

  • 8.

    Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: A coral reef perspective. Funct. Ecol. 33, 1365–2435. https://doi.org/10.1111/1365-2435.13265 (2019).

    Article 

    Google Scholar 

  • 9.

    Brandl, S. J. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. https://doi.org/10.1002/fee.2088 (2019).

    Article 

    Google Scholar 

  • 10.

    McLean, M., Mouillot, D., Villéger, S., Graham, N. A. J. & Auber, A. Interspecific differences in environmental response blur trait dynamics in classic statistical analyses. Mar. Biol. 166, 1–10 (2019).

    Google Scholar 

  • 11.

    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).

    Google Scholar 

  • 12.

    Griffin-Nolan, R. J. et al. Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct. Ecol. 32, 1746–1756 (2018).

    Google Scholar 

  • 13.

    Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    McLean, M. et al. A climate-driven functional inversion of connected marine ecosystems. Curr. Biol. 28, 3654-3660.e3 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    PubMed 

    Google Scholar 

  • 16.

    Harborne, A. R. & Mumby, P. J. Novel ecosystems: Altering fish assemblages in warming waters. Curr. Biol. 21, R822–R824 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).

    Google Scholar 

  • 18.

    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).

    Google Scholar 

  • 19.

    Munday, P. L. & Jones, G. P. The ecological implications of small body size among coral-reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 36, 373–411 (1998).

    Google Scholar 

  • 20.

    Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl. Acad. Sci. 107, 18256–18261 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Robinson, J. P. W. et al. Fishing degrades size structure of coral reef fish communities. Glob. Change Biol. 23, 1009–1022 (2017).

    ADS 

    Google Scholar 

  • 22.

    Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: Current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).

    Google Scholar 

  • 23.

    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science (80-.) 368, 307–311 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    McClanahan, T. R. Kenyan coral reef lagoon fish: Effects of fishing, substrate complexity, and sea urchins. Coral Reefs 13, 231–241 (1994).

    ADS 

    Google Scholar 

  • 25.

    McClanahan, T. R. & Graham, N. A. J. Recovery trajectories of coral reef fish assemblages within Kenyan marine protected areas. Mar. Ecol. Prog. Ser. 294, 241–248 (2005).

    ADS 

    Google Scholar 

  • 26.

    Graham, N. A. J. et al. Changing role of coral reef marine reserves in a warming climate. Nat. Commun. 111(11), 1–8 (2020).

    Google Scholar 

  • 27.

    Greene, L. E. The use of discrete group censusing for assessment and monitoring of reef fish assemblages. PhD diss., Florida Institute of Technology, Melbourne (1990).

  • 28.

    McClanahan, T. R., Graham, N. A. J., Calnan, J. M. & MacNeil, M. A. Toward pristine biomass: Reef fish recovery in coral reef marine protected areas in Kenya. Ecol. Appl. 17, 1055–1067 (2007).

    PubMed 

    Google Scholar 

  • 29.

    McClanahan, T. R. & Humphries, A. T. Differential and slow life-history responses of fishes to coral reef closures. Mar. Ecol. Prog. Ser. 469, 121–131 (2012).

    ADS 

    Google Scholar 

  • 30.

    Kublicki, M. GASPAR general approach to species-abundance relationships in a context of global change, reef fish species as a model (2010).

  • 31.

    Froese, R. & Pauly, D. FishBase. World Wide Web Electronic Publication. (2019). Available at: http://www.fishbase.org. Accessed 23 May 2019.

  • 32.

    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).

    PubMed 

    Google Scholar 

  • 33.

    Rousseeuw, P. et al. Finding Groups in Data: Cluster Analysis Extended Rousseeuw et al. CRAN (Comprehensive R Archive Network (CRAN), 2018).

  • 34.

    Paradis, E. et al. Package ‘ape’: Analyses of Phylogenetics and Evolution Depends R. (2019).

  • 35.

    Laliberté, E., Legendre, P. & Maintainer, B. S. Package ‘FD’ Type Package Title Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology (2015).

  • 36.

    Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22, 134–147 (2007).

    Google Scholar 

  • 37.

    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).

    ADS 

    Google Scholar 

  • 38.

    McClanahan, T. Coral reef fish communities, diversity, and their fisheries and biodiversity status in East Africa. Mar. Ecol. Prog. Ser. 632, 175–191 (2019).

    ADS 

    Google Scholar 

  • 39.

    Selig, E. R., Casey, K. S. & Bruno, J. F. New insights into global patterns of ocean temperature anomalies: Implications for coral reef health and management. Glob. Ecol. Biogeogr. 19, 397–411 (2010).

    Google Scholar 

  • 40.

    Ye, H., Deyle, E. R., Gilarranz, L. J. & Sugihara, G. Distinguishing time-delayed causal interactions using convergent cross mapping. Sci. Rep. 5, 14750 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Wilson, S. K. et al. Influence of nursery microhabitats on the future abundance of a coral reef fish. Proc. R. Soc. B Biol. Sci. 283, 1–7 (2016).

    Google Scholar 

  • 42.

    McClanahan, T. R. Decadal turnover of thermally stressed coral taxa support a risk-spreading approach to marine reserve design. Coral Reefs https://doi.org/10.1007/s00338-020-01984-w (2020).

    Article 

    Google Scholar 

  • 43.

    Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine socio-environmental covariates: Queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976 (2017).

    PubMed 

    Google Scholar 

  • 44.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (2009).

  • 45.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC Press, 2017).

    MATH 

    Google Scholar 

  • 46.

    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).

    Google Scholar 

  • 47.

    Wood, S. N. Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025–1036 (2006).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • 48.

    Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ 2019, e6876 (2019).

    Google Scholar 

  • 49.

    Pecuchet, L. et al. From traits to life-history strategies: Deconstructing fish community composition across European seas. Glob. Ecol. Biogeogr. 26, 812–822 (2017).

    Google Scholar 

  • 50.

    Dormann, F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).

    Google Scholar 

  • 51.

    Schulp, C. J. E., Lautenbach, S. & Verburg, P. H. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecol. Indic. 36, 131–141 (2014).

    Google Scholar 

  • 52.

    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: The analysis of proportions in ecology. Ecology 92, 3–10 (2011).

    PubMed 

    Google Scholar 

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 54.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 55.

    McClanahan, T. R., Ateweberhan, M., Muhando, C. A., Maina, J. & Mohammed, M. S. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol. Monogr. 77, 503–525 (2007).

    Google Scholar 

  • 56.

    Chirico, A. A. D., McClanahan, T. R. & Eklöf, J. S. Community- and government-managed marine protected areas increase fish size, biomass and potential value. PLoS ONE 12, e0182342 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    McClanahan, T. R., Friedlander, A. M., Graham, N. A. J., Chabanet, P. & Bruggemann, J. H. Variability in coral reef fish baseline and benchmark biomass in the central and western Indian Ocean provinces. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3448 (2020).

    Article 

    Google Scholar 

  • 58.

    Mbaru, E. K., Graham, N. A. J., McClanahan, T. R. & Cinner, J. E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13547 (2019).

    Article 

    Google Scholar 

  • 59.

    Dulvy, N. K., Polunin, N. V. C., Mill, A. C. & Graham, N. A. J. Size structural change in lightly exploited coral reef fish communities: Evidence for weak indirect effects. Can. J. Fish. Aquat. Sci. 61, 466–475 (2004).

    Google Scholar 

  • 60.

    D’Agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Mbaru, E. K. & McClanahan, T. R. Escape gaps in African basket traps reduce bycatch while increasing body sizes and incomes in a heavily fished reef lagoon. Fish. Res. 148, 90–99 (2013).

    Google Scholar 

  • 62.

    Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  • 63.

    Campbell, S. J. et al. Fishing restrictions and remoteness deliver conservation outcomes for Indonesia’s coral reef fisheries. Conserv. Lett. https://doi.org/10.1111/conl.12698 (2020).

    Article 

    Google Scholar 

  • 64.

    Heenan, A., Williams, G. J. & Williams, I. D. Natural variation in coral reef trophic structure across environmental gradients. Front. Ecol. Environ. 18, 69–75 (2020).

    Google Scholar 

  • 65.

    Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e6 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    González-Rivero, M. et al. Linking fishes to multiple metrics of coral reef structural complexity using three-dimensional technology. Sci. Rep. 7, 1–15 (2017).

    Google Scholar 

  • 67.

    Coker, D. J., Graham, N. A. J. & Pratchett, M. S. Interactive effects of live coral and structural complexity on the recruitment of reef fishes. Coral Reefs 31, 919–927 (2012).

    ADS 

    Google Scholar 

  • 68.

    Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).

    ADS 

    Google Scholar 

  • 69.

    Russ, G. R., Aller-Rojas, O. D., Rizzari, J. R. & Alcala, A. C. Off-reef planktivorous reef fishes respond positively to decadal-scale no-take marine reserve protection and negatively to benthic habitat change. Mar. Ecol. 38, e12442 (2017).

    ADS 

    Google Scholar 

  • 70.

    Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940 (2013).

    ADS 

    Google Scholar 

  • 71.

    Strain, E. M. A. et al. A global assessment of the direct and indirect benefits of marine protected areas for coral reef conservation. Divers. Distrib. 25, 9–20 (2019).

    Google Scholar 

  • 72.

    Floeter, S. R., Bender, M. G., Siqueira, A. C. & Cowman, P. F. Phylogenetic perspectives on reef fish functional traits. Biol. Rev. 93, 131–151 (2018).

    PubMed 

    Google Scholar 

  • 73.

    Michael, P. J., Hyndes, G. A., Vanderklift, M. A. & Vergés, A. Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar. Ecol. Prog. Ser. 482, 227–240 (2013).

    ADS 

    Google Scholar 

  • 74.

    Paijmans, K. C., Booth, D. J. & Wong, M. Y. L. Predation avoidance and foraging efficiency contribute to mixed-species shoaling by tropical and temperate fishes. J. Fish Biol. 96, 806–814 (2020).

    PubMed 

    Google Scholar 

  • 75.

    White, J. W. & Warner, R. R. Behavioral and energetic costs of group membership in a coral reef fish. Oecologia 154, 423–433 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • 76.

    van Kooten, T., Persson, L. & de Roos, A. M. Population dynamical consequences of gregariousness in a size-structured consumer-resource interaction. J. Theor. Biol. 245, 763–774 (2007).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • 77.

    Kelley, J. L., Grierson, P. F., Collin, S. P. & Davies, P. M. Habitat disruption and the identification and management of functional trait changes. Fish Fish. 19, 716–728 (2018).

    Google Scholar 

  • 78.

    Rochet, M. Short-term effects of fishing on life history traits of fishes. ICES J. Mar. Sci. 55, 371–391 (1998).

    Google Scholar 

  • 79.

    McClanahan, T. R. et al. Global baselines and benchmarks for fish biomass: Comparing remote reefs and fisheries closures. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps12874 (2019).

    Article 

    Google Scholar 

  • 80.

    Jacob, U. et al. The role of body size in complex food webs: A cold case. Adv. Ecol. Res. 45, 181–223 (2011).

    Google Scholar 

  • 81.

    McClanahan, T. R. & Graham, N. A. J. Marine reserve recovery rates towards a baseline are slower for reef fish community life histories than biomass. Proc. Biol. Sci. 282, 20151938 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Humphries, A. T. Algal turf consumption by sea urchins and fishes is mediated by fisheries management on coral reefs in Kenya. Coral Reefs https://doi.org/10.1007/s00338-020-01943-5 (2020).

    Article 

    Google Scholar 

  • 83.

    Ward, T. J., Heinemann, D. & Evans, N. The role of marine reserves as fisheries management tools. A review of concepts, evidence and international experience. Bur. Rural Sci. Aust. 192, 105 (2001).

    Google Scholar 

  • 84.

    Bergseth, B. J., Williamson, D. H., Russ, G. R., Sutton, S. G. & Cinner, J. E. A social-ecological approach to assessing and managing poaching by recreational fishers. Front. Ecol. Environ. 15, 67–73 (2017).

    Google Scholar 

  • 85.

    McClanahan, T. R. Recovery of functional groups and trophic relationships in tropical fisheries closures. Mar. Ecol. Prog. Ser. 497, 13–23 (2014).

    ADS 

    Google Scholar 

  • 86.

    Mcclanahan, T. R. & Omukoto, J. O. Comparison of modern and historical fish catches (AD 750–1400) to inform goals for marine protected areas and sustainable fisheries. Conserv. Biol. 25, 945–955 (2011).

    PubMed 

    Google Scholar 

  • 87.

    Williams, G. J. & Graham, N. A. J. Rethinking coral reef functional futures. Funct. Ecol. 33, 942–947 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production

    Population genetics and independently replicated evolution of predator-associated burst speed ecophenotypy in mosquitofish