Melbourne, B. A. & Hastings, A. Highly variable spread rates in replicated biological invasions: Fundamental limits to predictability. Science 325, 1536–1539 (2009).
Google Scholar
Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The Mathematics Behind Biological Invasions (Springer, 2016).
Google Scholar
Phillips, B. L. Evolutionary processes make invasion speed difficult to predict. Biol. Invasions 17, 1949–1960 (2015).
Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and the evolutionary dynamics of a species range. Am. Nat. 185, E81–E93 (2015).
Google Scholar
Burton, O. J., Travis, J. M. J. & Phillips, B. L. Trade-offs and the evolution of life-histories during range expansion. Ecol. Lett. 13, 1210–1220 (2010).
Google Scholar
Phillips, B. L. & Perkins, T. A. Spatial sorting as the spatial analogue of natural selection. Theor. Ecol. 12, 155–163 (2019).
Deforet, M., Carmona-Fontaine, C., Korolev, K. S. & Xavier, J. B. Evolution at the edge of expanding populations. Am. Nat. 194, 291–305 (2019).
Google Scholar
Travis, J. M. J. & Dytham, C. Dispersal evolution during invasions. Evol. Ecol. Res. 4, 1119–1129 (2002).
Bouin, E. et al. Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration. C. R. Math. 350, 761–766 (2012).
Google Scholar
Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl. Acad. Sci. USA 108, 5708–5711 (2011).
Google Scholar
Williams, J. L., Kendall, B. E. & Levine, J. M. Rapid evolution accelerates plant population spread in fragmented experimental landscapes. Science 353, 482–485 (2016).
Google Scholar
Weiss-Lehman, C., Hufbauer, R. A. & Melbourne, B. A. Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat. Commun. 8, 14303 (2017).
Google Scholar
Ochocki, B. M. & Miller, T. E. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).
Google Scholar
Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B 274, 1413–1419 (2007).
Google Scholar
Phillips, B. L., Brown, G. P. & Shine, R. Evolutionarily accelerated invasions: The rate of dispersal evolves upwards during the range advance of cane toads. J. Evol. Biol. 23, 2595–2601 (2010).
Google Scholar
Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).
Google Scholar
Phillips, B. L., Brown, G. P., Travis, J. M. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).
Google Scholar
Alford, R. A., Brown, G. P., Schwarzkopf, L., Phillips, B. L. & Shine, R. Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildl. Res. 36, 23–28 (2009).
Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. USA 110, 13452–13456 (2013).
Google Scholar
Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: The evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).
Google Scholar
DeVore, J., Ducatez, S. & Shine, R. Spatial ecology of cane toads (Rhinella marina) in their native range: A study from French Guiana. Sci. Rep. 11, 11817 (2021).
Google Scholar
Brattstrom, B. H. Homing in the giant toad, Bufo marinus. Herpetologica 18, 176–180 (1962).
Zug, G. R. & Zug, P. B. The marine toad Bufo marinus: A natural history resumé of native populations. Smithson. Contrib. Zool. 284, 1–58 (1979).
Bayliss, P. The ecology of post-metamorphic Bufo marinus in central Amazonian savanna, Brazil. Unpublished Ph.D. thesis (The University of Queensland, 1995).
Turvey, N. Cane Toads: A Tale of Sugar, Politics and Flawed Science (Sydney University Press, 2013).
Carpenter, C. C. & Gillingham, J. C. Water hole fidelity in the marine toad, Bufo marinus. J. Herpetol. 21, 158–161 (1987).
Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: Spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).
Google Scholar
Hastings, A. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24, 244–251 (1983).
Google Scholar
Möbius, W., et al. The collective effect of finite-sized inhomogeneities on the spatial spread of populations in two dimensions. Preprint at http://arxiv.org/abs/1910.05332 (2019).
Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).
Google Scholar
Macgregor, L. F., Greenlees, M., de Bruyn, M. & Shine, R. An invasion in slow motion: The spread of invasive cane toads (Rhinella marina) into cooler climates in southern Australia. Biol. Invasions 23(11), 3565–3581 (2021).
Perkins, A. T., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).
Google Scholar
Seabrook, W. Range expansion of the introduced cane toad Bufo marinus in New South Wales. Aust. Zool. 27, 58–62 (1991).
Kearney, M. R. et al. Modelling species distributions without using species distributions: The cane toad in Australia under current and future climates. Ecography 31, 423–434 (2008).
McCann, S. M., Kosmala, G. K., Greenlees, M. J. & Shine, R. Physiological plasticity in a successful invader: Rapid acclimation to cold occurs only in cool-climate populations of cane toads (Rhinella marina). Conserv. Physiol. 6, cox072 (2018).
Google Scholar
Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).
Seebacher, F. & Alford, R. A. Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: Seasonal variation and environmental correlates. J. Herpetol. 33, 208–214 (1999).
Phillips, B. L., Brown, G. P., Greenlees, M., Webb, J. K. & Shine, R. Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. Austral Ecol. 32, 169–176 (2007).
Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the Australian semi-desert. PLoS ONE 6, e25979 (2011).
Google Scholar
Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).
Pettit, L. J., Greenlees, M. J. & Shine, R. Is the enhanced dispersal rate seen at invasion fronts a behaviourally plastic response to encountering novel ecological conditions? Biol. Lett. 12, 20160539 (2016).
Google Scholar
Jessop, T. S. et al. Exploring mechanisms and origins of reduced dispersal in island Komodo Dragons. Proc. R. Soc. B 285, 20181829 (2018).
Google Scholar
Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).
Duckworth, R. A. The role of behavior in evolution: A search for mechanism. Evol. Ecol. 23, 513–531 (2009).
Muñoz, M. M. & Losos, J. B. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191, E15–E26 (2017).
Google Scholar
Carroll, S. P. et al. And the beak shall inherit–evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).
Google Scholar
Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).
Google Scholar
Acevedo, A. A., Lampo, M. & Cipriani, R. The cane or marine toad, Rhinella marina (Anura, Bufonidae): Two genetically and morphologically distinct species. Zootaxa 4103, 574–586 (2016).
Google Scholar
Reilly, S. M. et al. Conquering the world in leaps and bounds: Hopping locomotion in toads is actually bounding. Funct. Ecol. 29, 1308–1316 (2015).
Griffis-Kyle, K. L., Kyle, S. & Jungels, J. Use of breeding sites by arid-land toads in rangelands: Landscape-level factors. Southwest. Nat. 56, 251–255 (2011).
Sinsch, U. Movement ecology of amphibians: From individual migratory behaviour to spatially structured populations in heterogeneous landscapes. Can. J. Zool. 92, 491–502 (2014).
Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 1–36 (2020).
Child, T., Phillips, B. L., Brown, G. P. & Shine, R. The spatial ecology of cane toads (Bufo marinus) in tropical Australia: Why do metamorph toads stay near the water? Austral Ecol. 33, 630–640 (2008).
Pettit, L., Ducatez, S., DeVore, J. L., Ward-Fear, G. & Shine, R. Diurnal activity in cane toads (Rhinella marina) is geographically widespread. Sci. Rep. 10, 5723 (2020).
Google Scholar
Shine, R., Ward-Fear, G. & Brown, G. P. A famous failure: Why were cane toads an ineffective biocontrol in Australia? Conserv. Sci. Pract. 2, e296 (2020).
Shine, R., Everitt, C., Woods, D. & Pearson, D. J. An evaluation of methods used to cull invasive cane toads in tropical Australia. J. Pest Sci. 91, 1081–1091 (2018).
Silvester, R., Greenlees, M., Shine, R. & Oldroyd, B. Behavioural tactics used by invasive cane toads (Rhinella marina) to exploit apiaries in Australia. Austral Ecol. 44, 237–244 (2019).
Finnerty, P. B., Shine, R. & Brown, G. P. The costs of parasite infection: Effects of removing lungworms on performance, growth and survival of free-ranging cane toads. Funct. Ecol. 32, 402–415 (2018).
Pettit, L., Greenlees, M. & Shine, R. The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 184, 411–422 (2017).
Google Scholar
Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis (Springer, 2008).
McCann, S., Greenlees, M. J. & Shine, R. On the fringe of the invasion: The ecological impact of cane toads in marginally suitable habitats. Biol. Invasions 19, 2729–2737 (2017).
S. Kaiser et al., unpubl. Data.
Finnerty, P., Shine, R. & Brown, G. P. Survival of the faeces: Does a nematode lungworm adaptively manipulate the behaviour of its cane toad host? Ecol. Evol. 8, 4606–4618 (2018).
Google Scholar
Brown, G. P., Kelehear, C., Pizzatto, L. & Shine, R. The impact of lungworm parasites on rates of dispersal of their anuran host, the invasive cane toad. Biol. Invasions 18, 103–114 (2016).
G. Ward-Fear et al., unpubl. Data.
Source: Ecology - nature.com