Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).
Google Scholar
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
Google Scholar
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
Google Scholar
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
Google Scholar
Schwartz, M. W. et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6, art121 (2015).
Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9, 4355 (2018).
Google Scholar
Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as a refuge?. Proc. R. Soc. B Biol. Sci. 287, 20200709 (2020).
Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
Stephens, S. L. et al. Wildfire impacts on California spotted owl nesting habitat in the Sierra Nevada. Ecosphere 7, e01478 (2016).
Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).
Google Scholar
Duckworth, R. A. The role of behavior in evolution: a search for mechanism. Evol. Ecol. 23, 513–531 (2009).
Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).
Schluter, D. Distributions of Galapagos ground finches along an altitudinal gradient: The importance of food supply. Ecology 63, 1504–1517 (1982).
Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–234 (1988).
Google Scholar
Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).
Google Scholar
Fryxell, J. M. & Lundberg, P. Diet choice and predator-prey dynamics. Evol. Ecol. 8, 407–421 (1994).
Heron, S. et al. Impacts of climate change on world heritage coral reefs: Update to the first global scientific assessment. https://apo.org.au/node/193206 (2018).
Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. 101, 8251–8253 (2004).
Google Scholar
Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).
Google Scholar
Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).
Google Scholar
Pratchett, M. S., Thompson, C. A., Hoey, A. S., Cowman, P. F. & Wilson, S. K. Effects of coral bleaching and coral loss on the structure and function of reef fish assemblages. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 265–293 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-75393-5_11.
Google Scholar
Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).
Google Scholar
Gintert, B. E. et al. Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing?. Coral Reefs 37, 533–547 (2018).
Google Scholar
Gold, Z. & Palumbi, S. R. Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs 37, 267–277 (2018).
Google Scholar
Fox, M. D. et al. Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs 38, 701–712 (2019).
Google Scholar
Thinesh, T., Meenatchi, R., Jose, P. A., Kiran, G. S. & Selvin, J. Differential bleaching and recovery pattern of southeast Indian coral reef to 2016 global mass bleaching event: Occurrence of stress-tolerant symbiont Durusdinium (Clade D) in corals of Palk Bay. Mar. Pollut. Bull. 145, 287–294 (2019).
Google Scholar
Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).
Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 7, e8138 (2019).
Google Scholar
Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef?. Proc. R. Soc. B Biol. Sci. 284, 20171551 (2017).
Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018).
Google Scholar
Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 3447 (2018).
Google Scholar
Crosbie, A., Bridge, T., Jones, G. & Baird, A. Response of reef corals and fish at Osprey Reef to a thermal anomaly across a 30 m depth gradient. Mar. Ecol. Prog. Ser. 622, 93–102 (2019).
Google Scholar
Harrison, H. B. et al. Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs 38, 713–719 (2019).
Google Scholar
Sheppard, C., Sheppard, A. & Fenner, D. Coral mass mortalities in the Chagos Archipelago over 40 years: Regional species and assemblage extinctions and indications of positive feedbacks. Mar. Pollut. Bull. 154, 111075 (2020).
Google Scholar
Berumen, M. L., Pratchett, M. S. & McCormick, M. I. Within-reef differences in diet and body condition of coral-feeding butterflyfishes (Chaetodontidae). Mar. Ecol. Prog. Ser. 287, 217–227 (2005).
Google Scholar
Coker, D. J., Pratchett, M. S. & Munday, P. L. Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behav. Ecol. 20, 1204–1210 (2009).
Glynn, P. W. Corallivore population sizes and feeding effects following El Niño (1982–1983) associated coral mortality in Panama. in Proceedings of the 5th International Coral Reef Congress Symposium vol. 4, 183–188 (1985).
Gates, R. D. Seawater temperature and sublethal coral bleaching in Jamaica. Coral Reefs 8, 193–197 (1990).
Google Scholar
Cole, A. J., Pratchett, M. S. & Jones, G. P. Effects of coral bleaching on the feeding response of two species of coral-feeding fish. J. Exp. Mar. Biol. Ecol. 373, 11–15 (2009).
Pisapia, C., Cole, A. J. & Pratchett, M. S. Changing feeding preferences of butterflyfishes following coral bleaching. in Proceedings of the 12th International Coral Reef Symposium 5 (2012).
Brooker, R. M., Munday, P. L., Brandl, S. J. & Jones, G. P. Local extinction of a coral reef fish explained by inflexible prey choice. Coral Reefs 33, 891–896 (2014).
Google Scholar
Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).
Google Scholar
Loya, Y., Puglise, K. A. & Bridge, T. C. L. Mesophotic Coral Ecosystems (Springer, 2019).
Goldstein, E. D., D’Alessandro, E. K. & Sponaugle, S. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish. Coral Reefs 36, 957–968 (2017).
Google Scholar
MacDonald, C., Jones, G. P. & Bridge, T. Marginal sinks or potential refuges? Costs and benefits for coral-obligate reef fishes at deep range margins. Proc. R. Soc. B Biol. Sci. 285, 20181545 (2018).
MacDonald, C., Bridge, T. C. L., McMahon, K. W. & Jones, G. P. Alternative functional strategies and altered carbon pathways facilitate broad depth ranges in coral-obligate reef fishes. Funct. Ecol. 33, 1962–1972 (2019).
MacDonald, C. Depth as Refuge: Depth Gradients in Ecological Pattern, Process, and Risk Mitigation Among Coral Reef Fishes (James Cook University, 2018).
MacDonald, C., Tauati, M. I. & Jones, G. P. Depth patterns in microhabitat versatility and selectivity in coral reef damselfishes. Mar. Biol. 165, 138 (2018).
MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).
Google Scholar
Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).
Google Scholar
Tricas, T. C. Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctus. Anim. Behav. 37, 830–841 (1989).
Coker, D. J., Pratchett, M. S. & Munday, P. L. Influence of coral bleaching, coral mortality and conspecific aggression on movement and distribution of coral-dwelling fish. J. Exp. Mar. Biol. Ecol. 414–415, 62–68 (2012).
Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).
Google Scholar
Berumen, M. L. & Pratchett, M. S. Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon). Behav. Ecol. Sociobiol. 62, 989–994 (2008).
Brooker, R. M., Jones, G. P. & Munday, P. L. Prey selectivity affects reproductive success of a corallivorous reef fish. Oecologia 172, 409–416 (2013).
Google Scholar
Burns, C. E. Behavioral ecology of disturbed landscapes: the response of territorial animals to relocation. Behav. Ecol. 16, 898–905 (2005).
Blowes, S. A., Pratchett, M. S. & Connolly, S. R. Heterospecific aggression and dominance in a guild of coral-feeding fishes: the roles of dietary ecology and phylogeny. Am. Nat. 182, 157–168 (2013).
Google Scholar
Pratchett, M. S. Feeding preferences and dietary specialization among obligate coral-feeding butterflyfishes. Biol. Butterflyfishes CRC Press Boca Raton USA 140–179 (2013).
Penin, L., Vidal-Dupiol, J. & Adjeroud, M. Response of coral assemblages to thermal stress: Are bleaching intensity and spatial patterns consistent between events?. Environ. Monit. Assess. 185, 5031–5042 (2013).
Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).
Google Scholar
Bloomberg, J. & Holstein, D. M. Mesophotic coral refuges following multiple disturbances. Coral Reefs 40, 821–834 (2021).
Bridge, T. C. L. et al. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef. PLoS One 9, e113079 (2014).
Google Scholar
Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol. 20, 3823–3833 (2014).
Google Scholar
Hoogenboom, M. O. et al. Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly. Front. Mar. Sci. 4, 376 (2017).
Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Change Biol. 26, 68–79 (2020).
Google Scholar
Starbuck, C. A., Considine, E. S. & Chambers, C. L. Water and elevation are more important than burn severity in predicting bat activity at multiple scales in a post-wildfire landscape. PLoS One 15, e0231170 (2020).
Google Scholar
Bond, M. L., Bradley, C. & Lee, D. E. Foraging habitat selection by California spotted owls after fire: Spotted Owls and Fire. J. Wildl. Manag. 80, 1290–1300 (2016).
NOAA. Kaplan SST V2 data provided by the NOAA/OAR/ESRL PSL. https://psl.noaa.gov/ (2020).
Pinheiro, H. T. et al. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35, 139–151 (2016).
Google Scholar
Yabuta, S. & Berumen, M. L. Social structure and spawning behavior of Chaetodon butterflyfishes. in The Biology of Butterflyfishes (CRC Press, 2013).
Pearl, J., Glymour, M. & Jewell, N. P. Causal Inference in Statistics: A Primer (Wiley, 2016).
Google Scholar
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2020). https://doi.org/10.1201/9780429029608.
Google Scholar
Manly, B. F., McDonald, L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2007).
Source: Ecology - nature.com