in

Disturbance and distribution gradients influence resource availability and feeding behaviours in corallivore fishes following a warm-water anomaly

  • 1.

    Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).

    PubMed 

    Google Scholar 

  • 2.

    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Schwartz, M. W. et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6, art121 (2015).

    Google Scholar 

  • 6.

    Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9, 4355 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as a refuge?. Proc. R. Soc. B Biol. Sci. 287, 20200709 (2020).

    Google Scholar 

  • 8.

    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Google Scholar 

  • 9.

    Stephens, S. L. et al. Wildfire impacts on California spotted owl nesting habitat in the Sierra Nevada. Ecosphere 7, e01478 (2016).

    Google Scholar 

  • 10.

    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Duckworth, R. A. The role of behavior in evolution: a search for mechanism. Evol. Ecol. 23, 513–531 (2009).

    Google Scholar 

  • 12.

    Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).

    Google Scholar 

  • 13.

    Schluter, D. Distributions of Galapagos ground finches along an altitudinal gradient: The importance of food supply. Ecology 63, 1504–1517 (1982).

    Google Scholar 

  • 14.

    Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–234 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Fryxell, J. M. & Lundberg, P. Diet choice and predator-prey dynamics. Evol. Ecol. 8, 407–421 (1994).

    Google Scholar 

  • 17.

    Heron, S. et al. Impacts of climate change on world heritage coral reefs: Update to the first global scientific assessment. https://apo.org.au/node/193206 (2018).

  • 18.

    Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. 101, 8251–8253 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).

    ADS 

    Google Scholar 

  • 20.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Pratchett, M. S., Thompson, C. A., Hoey, A. S., Cowman, P. F. & Wilson, S. K. Effects of coral bleaching and coral loss on the structure and function of reef fish assemblages. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 265–293 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-75393-5_11.

    Chapter 

    Google Scholar 

  • 22.

    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).

    ADS 

    Google Scholar 

  • 23.

    Gintert, B. E. et al. Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing?. Coral Reefs 37, 533–547 (2018).

    ADS 

    Google Scholar 

  • 24.

    Gold, Z. & Palumbi, S. R. Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs 37, 267–277 (2018).

    ADS 

    Google Scholar 

  • 25.

    Fox, M. D. et al. Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs 38, 701–712 (2019).

    ADS 

    Google Scholar 

  • 26.

    Thinesh, T., Meenatchi, R., Jose, P. A., Kiran, G. S. & Selvin, J. Differential bleaching and recovery pattern of southeast Indian coral reef to 2016 global mass bleaching event: Occurrence of stress-tolerant symbiont Durusdinium (Clade D) in corals of Palk Bay. Mar. Pollut. Bull. 145, 287–294 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).

    Google Scholar 

  • 28.

    Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 7, e8138 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef?. Proc. R. Soc. B Biol. Sci. 284, 20171551 (2017).

    Google Scholar 

  • 30.

    Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018).

    ADS 

    Google Scholar 

  • 31.

    Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 3447 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Crosbie, A., Bridge, T., Jones, G. & Baird, A. Response of reef corals and fish at Osprey Reef to a thermal anomaly across a 30 m depth gradient. Mar. Ecol. Prog. Ser. 622, 93–102 (2019).

    ADS 

    Google Scholar 

  • 33.

    Harrison, H. B. et al. Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs 38, 713–719 (2019).

    ADS 

    Google Scholar 

  • 34.

    Sheppard, C., Sheppard, A. & Fenner, D. Coral mass mortalities in the Chagos Archipelago over 40 years: Regional species and assemblage extinctions and indications of positive feedbacks. Mar. Pollut. Bull. 154, 111075 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Berumen, M. L., Pratchett, M. S. & McCormick, M. I. Within-reef differences in diet and body condition of coral-feeding butterflyfishes (Chaetodontidae). Mar. Ecol. Prog. Ser. 287, 217–227 (2005).

    ADS 

    Google Scholar 

  • 36.

    Coker, D. J., Pratchett, M. S. & Munday, P. L. Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behav. Ecol. 20, 1204–1210 (2009).

    Google Scholar 

  • 37.

    Glynn, P. W. Corallivore population sizes and feeding effects following El Niño (1982–1983) associated coral mortality in Panama. in Proceedings of the 5th International Coral Reef Congress Symposium vol. 4, 183–188 (1985).

  • 38.

    Gates, R. D. Seawater temperature and sublethal coral bleaching in Jamaica. Coral Reefs 8, 193–197 (1990).

    ADS 

    Google Scholar 

  • 39.

    Cole, A. J., Pratchett, M. S. & Jones, G. P. Effects of coral bleaching on the feeding response of two species of coral-feeding fish. J. Exp. Mar. Biol. Ecol. 373, 11–15 (2009).

    Google Scholar 

  • 40.

    Pisapia, C., Cole, A. J. & Pratchett, M. S. Changing feeding preferences of butterflyfishes following coral bleaching. in Proceedings of the 12th International Coral Reef Symposium 5 (2012).

  • 41.

    Brooker, R. M., Munday, P. L., Brandl, S. J. & Jones, G. P. Local extinction of a coral reef fish explained by inflexible prey choice. Coral Reefs 33, 891–896 (2014).

    ADS 

    Google Scholar 

  • 42.

    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Loya, Y., Puglise, K. A. & Bridge, T. C. L. Mesophotic Coral Ecosystems (Springer, 2019).

    Google Scholar 

  • 44.

    Goldstein, E. D., D’Alessandro, E. K. & Sponaugle, S. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish. Coral Reefs 36, 957–968 (2017).

    ADS 

    Google Scholar 

  • 45.

    MacDonald, C., Jones, G. P. & Bridge, T. Marginal sinks or potential refuges? Costs and benefits for coral-obligate reef fishes at deep range margins. Proc. R. Soc. B Biol. Sci. 285, 20181545 (2018).

    Google Scholar 

  • 46.

    MacDonald, C., Bridge, T. C. L., McMahon, K. W. & Jones, G. P. Alternative functional strategies and altered carbon pathways facilitate broad depth ranges in coral-obligate reef fishes. Funct. Ecol. 33, 1962–1972 (2019).

    Google Scholar 

  • 47.

    MacDonald, C. Depth as Refuge: Depth Gradients in Ecological Pattern, Process, and Risk Mitigation Among Coral Reef Fishes (James Cook University, 2018).

    Google Scholar 

  • 48.

    MacDonald, C., Tauati, M. I. & Jones, G. P. Depth patterns in microhabitat versatility and selectivity in coral reef damselfishes. Mar. Biol. 165, 138 (2018).

    Google Scholar 

  • 49.

    MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).

    ADS 

    Google Scholar 

  • 50.

    Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).

    ADS 

    Google Scholar 

  • 51.

    Tricas, T. C. Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctus. Anim. Behav. 37, 830–841 (1989).

    Google Scholar 

  • 52.

    Coker, D. J., Pratchett, M. S. & Munday, P. L. Influence of coral bleaching, coral mortality and conspecific aggression on movement and distribution of coral-dwelling fish. J. Exp. Mar. Biol. Ecol. 414–415, 62–68 (2012).

    Google Scholar 

  • 53.

    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Berumen, M. L. & Pratchett, M. S. Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon). Behav. Ecol. Sociobiol. 62, 989–994 (2008).

    Google Scholar 

  • 55.

    Brooker, R. M., Jones, G. P. & Munday, P. L. Prey selectivity affects reproductive success of a corallivorous reef fish. Oecologia 172, 409–416 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • 56.

    Burns, C. E. Behavioral ecology of disturbed landscapes: the response of territorial animals to relocation. Behav. Ecol. 16, 898–905 (2005).

    Google Scholar 

  • 57.

    Blowes, S. A., Pratchett, M. S. & Connolly, S. R. Heterospecific aggression and dominance in a guild of coral-feeding fishes: the roles of dietary ecology and phylogeny. Am. Nat. 182, 157–168 (2013).

    PubMed 

    Google Scholar 

  • 58.

    Pratchett, M. S. Feeding preferences and dietary specialization among obligate coral-feeding butterflyfishes. Biol. Butterflyfishes CRC Press Boca Raton USA 140–179 (2013).

  • 59.

    Penin, L., Vidal-Dupiol, J. & Adjeroud, M. Response of coral assemblages to thermal stress: Are bleaching intensity and spatial patterns consistent between events?. Environ. Monit. Assess. 185, 5031–5042 (2013).

    Google Scholar 

  • 60.

    Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 61.

    Bloomberg, J. & Holstein, D. M. Mesophotic coral refuges following multiple disturbances. Coral Reefs 40, 821–834 (2021).

    Google Scholar 

  • 62.

    Bridge, T. C. L. et al. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef. PLoS One 9, e113079 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol. 20, 3823–3833 (2014).

    ADS 

    Google Scholar 

  • 64.

    Hoogenboom, M. O. et al. Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly. Front. Mar. Sci. 4, 376 (2017).

    Google Scholar 

  • 65.

    Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Change Biol. 26, 68–79 (2020).

    ADS 

    Google Scholar 

  • 66.

    Starbuck, C. A., Considine, E. S. & Chambers, C. L. Water and elevation are more important than burn severity in predicting bat activity at multiple scales in a post-wildfire landscape. PLoS One 15, e0231170 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Bond, M. L., Bradley, C. & Lee, D. E. Foraging habitat selection by California spotted owls after fire: Spotted Owls and Fire. J. Wildl. Manag. 80, 1290–1300 (2016).

    Google Scholar 

  • 68.

    NOAA. Kaplan SST V2 data provided by the NOAA/OAR/ESRL PSL. https://psl.noaa.gov/ (2020).

  • 69.

    Pinheiro, H. T. et al. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35, 139–151 (2016).

    ADS 

    Google Scholar 

  • 70.

    Yabuta, S. & Berumen, M. L. Social structure and spawning behavior of Chaetodon butterflyfishes. in The Biology of Butterflyfishes (CRC Press, 2013).

  • 71.

    Pearl, J., Glymour, M. & Jewell, N. P. Causal Inference in Statistics: A Primer (Wiley, 2016).

    MATH 

    Google Scholar 

  • 72.

    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2020). https://doi.org/10.1201/9780429029608.

    Book 

    Google Scholar 

  • 73.

    Manly, B. F., McDonald, L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2007).

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: More-sustainable concrete with machine learning

    Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula