in

Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula

  • 1.

    Landschützer, P., Gruber, N. & Bakker, D. C. E. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30, 1396–1417 (2016).

    ADS 

    Google Scholar 

  • 2.

    Gruber, N., Landschützer, P. & Lovenduski, N. S. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11, 159–186 (2019).

    ADS 

    Google Scholar 

  • 3.

    Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).

    ADS 

    Google Scholar 

  • 5.

    Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    ADS 

    Google Scholar 

  • 6.

    Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: degradation processes and ballasting effects. Deep Sea Res. Pt. I 57, 771–784 (2010).

    CAS 

    Google Scholar 

  • 7.

    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).

    ADS 

    Google Scholar 

  • 8.

    Manno, C., Stowasser, G., Enderlein, P., Fielding, S. & Tarling, G. A. The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12, 1955–1965 (2015).

    ADS 

    Google Scholar 

  • 9.

    Archibald, K. M., Siegel, D. A. & Doney, S. C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33, 181–199 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Whitehouse, M. J. et al. Role of krill versus bottom-up factors in controlling phytoplankton biomass in the northern Antarctic waters of South Georgia. Mar. Ecol. Prog. Ser. 393, 69–82 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Res. 59–60, 147–158 (2012). Pt. II.

    ADS 

    Google Scholar 

  • 12.

    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Gleiber, M. R., Steinberg, D. K. & Ducklow, H. W. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 471, 23–36 (2012).

    ADS 

    Google Scholar 

  • 16.

    Belcher, A. et al. The role of particle associated microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica. Limnol. Oceanogr. 61, 1049–1064 (2016).

    ADS 

    Google Scholar 

  • 17.

    Siegel, V. & Watkins, J. L. Distribution, Biomass and Demography of Antarctic Krill, Euphausia Superba in Biology and Ecology of Antarctic Krill 21-100 (Springer International Publishing, Switzerland, 2016).

  • 18.

    Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett. 42, 821–830 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Bathmann, U., Fischer, G., Müller, P. J. & Gerdes, D. Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11, 185–195 (1991).

    Google Scholar 

  • 20.

    Ducklow, H. W. et al. Marine pelagic ecosystems: The West Antarctic Peninsula. Philos. Trans. R. Soc., B. 362, 67–94 (2007).

    Google Scholar 

  • 21.

    Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. Trans. R. Soc., B. 362, 149–166 (2007).

    Google Scholar 

  • 22.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).

    Google Scholar 

  • 23.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

    ADS 

    Google Scholar 

  • 24.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Bernard, K. S., Steinberg, D. K. & Schofield, O. M. E. Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. Pt. I 62, 111–122 (2012).

    Google Scholar 

  • 26.

    Pakhomov, E. A., Dubischar, C. D., Strass, V., Brichta, M. & Bathmann, U. V. The tunicate Salpa thompsoni ecology in the Southern Ocean. I. Distribution, biomass, demography and feeding ecophysiology. Mar. Biol. 149, 609–623 (2006).

    Google Scholar 

  • 27.

    Fischer, G. et al. Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335, 426–428 (1988).

    ADS 

    Google Scholar 

  • 28.

    Schmidt, K. & Atkinson, A. Feeding and Food Processing in Antarctic Krill (Euphausia superba Dana) in Biology and Ecology of Antarctic Krill 175-224 (Springer International Publishing, Switzerland, 2016).

  • 29.

    Bone, Q., Carré, C. & Chang, P. Tunicate feeding filters. J. Mar. Biol. Assoc. 83, 907–919 (2003).

    Google Scholar 

  • 30.

    Pakhomov, E. A., Froneman, P. W. & Perissinotto, R. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep Sea Res. 49, 1881–1907 (2002). Pt. II.

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Iversen, M. H. et al. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep Sea Res. 138, 116–125 (2017). Pt. II.

    CAS 

    Google Scholar 

  • 32.

    Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Dubischar, C. D. & Bathmann, U. V. The occurrence of faecal material in relation to different pelagic systems in the Southern Ocean and its importance for vertical flux. Deep Sea Res. 49, 3229–3242 (2002). Pt. II.

    ADS 

    Google Scholar 

  • 34.

    Manno, C. et al. Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean. Nat. Commun. 11, 6051 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Pauli, N.-C. et al. Selective feeding in Southern Ocean key grazers—diet composition of krill and salps. Commun. Biol. 4, 1061 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Siegel, V. Introducing Antarctic Krill Euphausia Superba Dana, 1850 in Biology and Ecology of Antarctic Krill 23-41 (Springer International Publishing, Switzerland, 2016).

  • 38.

    Pakhomov, E. A. Salp/krill interactions in the eastern Atlantic sector of the Southern Ocean. Deep Sea Res. 51, 2645–2660 (2004). Pt. II.

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Phillips, B., Kremer, P. & Madin, L. P. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol. 156, 455–467 (2009).

    Google Scholar 

  • 40.

    Perissinotto, R. & Pakhomov, E. A. Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean. Mar. Biol. 131, 25–32 (1998).

    CAS 

    Google Scholar 

  • 41.

    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).

    ADS 

    Google Scholar 

  • 42.

    Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).

    ADS 

    Google Scholar 

  • 43.

    Ploug, H., Iversen, M. H., Koski, M. & Buitenhuis, E. T. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53, 469–476 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Iversen, M. H. & Poulsen, L. K. Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Mar. Ecol. Prog. Ser. 350, 79–89 (2007).

    ADS 

    Google Scholar 

  • 45.

    Cavan, E. L., Kawaguchi, S. & Boyd, P. W. Implications for the mesopelagic microbial gardening hypothesis as determined by experimental fragmentation of Antarctic krill fecal pellets. Ecol. Evol. 11, 1023–1036 (2021).

    PubMed 

    Google Scholar 

  • 46.

    Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 47.

    DeMott, W. R. Retention Efficiency, Perceptual Bias, and Active Choice As Mechanisms of Food Selection by Suspension-Feeding Zooplankton in Behavioural Mechanisms of Food Selection 569–594 (Springer, Berlin, Heidelberg, Germany, 1990).

  • 48.

    Suh, H. L. & Nemoto, T. Morphology of the gastric mill in ten species of euphausiids. Mar. Biol. 97, 79–85 (1988).

    Google Scholar 

  • 49.

    Gauld, D. T. A peritrophic membrane in calanoid copepods. Nature 179, 325–326 (1957).

    ADS 

    Google Scholar 

  • 50.

    Bruland, K. W. & Silver, M. W. Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar. Biol. 63, 295–300 (1981).

    Google Scholar 

  • 51.

    von Harbou, L. Trophodynamics of Salps in the Atlantic Southern Ocean. PhD thesis, University of Bremen, (2009).

  • 52.

    Poulsen, L. K. & Iversen, M. H. Degradation of copepod fecal pellets: Key role of protozooplankton. Mar. Ecol. Prog. Ser. 367, 1–13 (2008).

    ADS 

    Google Scholar 

  • 53.

    Böckmann, S. et al. Salp fecal pellets release more bioavailable iron to Southern Ocean phytoplankton than krill fecal pellets. Curr. Biol. 31, 2737–2746.e2733 (2021).

    PubMed 

    Google Scholar 

  • 54.

    Alcaraz, M. et al. Changes in the C, N, and P cycles by the predicted salps-krill shift in the Southern Ocean. Front. Mar. Sci. 1, 45 (2014).

    Google Scholar 

  • 55.

    Fielding, S., Watkins, J. L., Collins, M. A., Enderlein, P. & Venables, H. J. Acoustic determination of the distribution of fish and krill across the Scotia Sea in spring 2006, summer 2008 and autumn 2009. Deep Sea Res. 59-60, 173–188 (2012). Pt. II.

    ADS 

    Google Scholar 

  • 56.

    Chiba, S., Horimoto, N., Satoh, R., Yamaguchi, Y. & Ishimaru, T. Macrozooplankton distribution around the Antarctic Divergence off Wilkes Land in the 1996 austral summer: With reference to high abundance of Salpa thompsoni. in: Proceedings of NIPR Symposium on Polar Biology, 33–50 (1998).

  • 57.

    Henschke, N. & Pakhomov, E. A. Latitudinal variations in Salpa thompsoni reproductive fitness. Limnol. Oceanogr. 64, 575–584 (2018).

    ADS 

    Google Scholar 

  • 58.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 59.

    Foxton, P. The Distribution and Life-History of Salpa thompsoni Foxton with Observations on a Related Species, Salpa gerlachei Foxton (Cambridge University Press, UK, Cambridge, 1966).

  • 60.

    Meyer, B. et al. Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation. Commun. Earth Environ. 1, 28 (2020).

    ADS 

    Google Scholar 

  • 61.

    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Pt. I 56, 727–740 (2009).

    Google Scholar 

  • 62.

    Montes-Hugo, M. et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323, 1470–1473 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Fielding, S. et al. A Condensed History and Document of the Method Used by CCAMLR to Estimate Krill Biomass (B0) in 2010. (CCAMLR, 2016).

  • 64.

    Chu, D., Foote, K. G. & Stanton, T. K. Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz: comparison with deformed cylinder model and inference of orientation distribution. J. Acoust. Soc. Am. 93, 2985–2988 (1993).

    ADS 

    Google Scholar 

  • 65.

    McGehee, D. E., O’Driscoll, R. L. & Traykovski, L. V. M. Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz. Deep Sea Res. 45, 1273–1294 (1998). Pt. II.

    ADS 

    Google Scholar 

  • 66.

    Demer, D. A. & Conti, S. G. Reconciling theoretical versus empirical target strengths of krill: effects of phase variability on the distorted-wave Born approximation. ICES J. Mar. Sci. 60, 429–434 (2003).

    Google Scholar 

  • 67.

    Conti, S. G. & Demer, D. A. Improved parameterization of the SDWBA for estimating krill target strength. ICES J. Mar. Sci. 63, 928–935 (2006).

    Google Scholar 

  • 68.

    Calise, L. & Skaret, G. Sensitivity investigation of the SDWBA Antarctic krill target strength model to fatness, material contrasts and orientation. CCAMLR Sci. 18, 97–122 (2011).

    Google Scholar 

  • 69.

    Hewitt, R. P. et al. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep Sea Res. 51, 1215–1236 (2004). Pt. II.

    ADS 

    Google Scholar 

  • 70.

    Flintrop, C. M. et al. Embedding and slicing of intact in situ collected marine snow. Limnol. Oceanogr. Methods 16, 339–355 (2018).

    Google Scholar 

  • 71.

    Markussen, T. N. et al. Tracks in the snow—advantage of combining optical methods to characterize marine particles and aggregates. Front. Mar. Sci. 7, 476 (2020).

    Google Scholar 

  • 72.

    Ploug, H. & Jorgensen, B. B. A net-jet flow system for mass transfer and microsensor studies of sinking aggregates. Mar. Ecol. Prog. Ser. 176, 279–290 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 73.

    Ploug, H., Terbrüggen, A., Kaufmann, A., Wolf-Gladrow, D. & Passow, U. A novel method to measure particle sinking velocity in vitro, and its comparison to three other in vitro methods. Limnol. Oceanogr. Methods 8, 386–393 (2010).

    Google Scholar 

  • 74.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 75.

    ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).


  • Source: Ecology - nature.com

    A constraint on historic growth in global photosynthesis due to increasing CO2

    A tool to speed development of new solar cells