Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).
Google Scholar
Raich, J. W., Potter, C. S. & Bhagawati, D. Interannual variability in global soil respiration, 1980–94. Glob. Change Biol. 8, 800–812 (2002).
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition feedbacks to climate change. Nature 440, 165–173 (2006).
Google Scholar
Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).
Google Scholar
Heimann, H. & Reichstein, R. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).
Google Scholar
Fang, C. et al. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agr. Forest Meteorol. 248, 449–457 (2018).
Wang, Q., Liu, S., Wang, Y., Tian, P. & Sun, T. Influences of N deposition on soil microbial respiration and its temperature sensitivity depend on N type in a temperate forest. Agr. Forest Meteorol. 260–261, 240–246 (2018).
Zhong, Y. Q. W., Yan, W. M., Zong, Y. Z. & Shangguan, Z. P. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Global Ecol. Biogeogr. 25, 475–488 (2016).
Yu, G. R. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).
Google Scholar
Coucheney, E., Strömgren, M., Lerch, T. Z. & Herrmann, A. M. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization. Ecol. Evol. 3, 5177–5188 (2013).
Jiang, J. S., Guo, S. L., Wang, R., Liu, Q. F. & Sun, Q. Q. Effects of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on loess plateau. Environ. Sci. 36, 1802–1809 (2015).
Wang, Q., Zhao, X., Tian, P., Liu, S. & Sun, Z. Bioclimate and arbuscular mycorrhizal fungi regulate continental biogeographic variations in effect of nitrogen deposition on the temperature sensitivity of soil organic carbon decomposition. Land Degrad. Dev. 32, 936–945 (2021).
Schindlbacher, A., Zechmeister-Boltenstern, S. & Jandl, R. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob. Change Biol. 15, 901–903 (2009).
Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. 113, 13797–13802 (2016).
Google Scholar
Lyu, M., Giardina, C. P. & Litton, C. M. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest. Glob. Change Biol. 27, 3824–3836 (2021).
Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct. Ecol. 33, 514–523 (2019).
Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).
Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).
Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).
Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596 (2018).
Ding, J. Y. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. 39, 125460 (2019).
Eldridge, D. J. & Delgado-Baquerizo, M. The influence of climatic legacies on the distribution of dryland biocrust communities. Glob. Change Biol. 25, 327–336 (2019).
Pärtel, M., Chiarucci, A., Chytrý, M. & Pillar, V. D. Mapping plant community ecology. J. Veg. Sci. 26, 1–3 (2017).
Richter, D. D. & Yaalon, D. H. “The changing model of soil” revisited. Soil Sci. Soc. Am. J. 76, 766–778 (2012).
Google Scholar
Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
Google Scholar
Delgado-Baquerizo, M. et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 86, 373–390 (2016).
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J. & Singh, B. K. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. 112, 15684–15689 (2015).
Google Scholar
Monger, C. et al. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19 (2016).
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).
Google Scholar
Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy. 20, GB3026 (2006).
Peng, S., Piao, S., Wang, T., Sun, J. & Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 41, 1008–1014 (2009).
Google Scholar
Xu, Z. et al. Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Appl. Soil Ecol. 93, 105–110 (2015).
Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).
Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).
Google Scholar
Yan, G. Y. et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition. Agr. Forest Meteorol. 248, 70–81 (2018).
Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).
Google Scholar
Chen, Z. M. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).
Google Scholar
Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest Meteorol. 271, 336–345 (2019).
Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).
Google Scholar
Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).
Google Scholar
Li, Y. et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 615, 1535–1546 (2018).
Google Scholar
Sanderman, J. Comment on “Climate legacies drive global soil carbon stocks in terrestrial ecosystems”. Sci. Adv. 4, e1701482 (2018).
Ding, J. et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun. 10, 4195 (2019).
Gershenson, A., Bader, N. E. & Cheng, W. X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Change Biol. 15, 176–183 (2009).
Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).
Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
Li, J., Ziegler, S. E., Lane, C. S. & Billings, S. A. Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature. Soil Biol. Biochem. 66, 204–213 (2013).
Google Scholar
Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Chang. Biol. 27, 2061–2075 (2021).
Du, Y. et al. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. Glob. Chang. Biol. 26, 6015–6024 (2020).
Meier, I. C. & Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11, 655–669 (2008).
Google Scholar
Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).
Google Scholar
Katz, M. H. Multivariable Analysis: A Practical Guide for Clinicians and Public Health Researchers (Cambridge Univ. Press, Cambridge, 2006).
Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. 112, 10967–10972 (2015).
Google Scholar
Grace, J. B. Structural Equation Modeling Natural Systems (Cambridge Univ. Press, Cambridge, 2006).
Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol 7, 573–579 (2016).
Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–13 (2017).
Source: Ecology - nature.com