in

Impacts of hydropower on the habitat of jaguars and tigers

  • 1.

    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 

    Google Scholar 

  • 2.

    Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    ICOLD. International Commission on Large Dams. http://www.icold-cigb.org/ (2016).

  • 4.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  • 5.

    Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy? Trends Ecol. Evol. 32, 922–935 (2017).

    PubMed 

    Google Scholar 

  • 6.

    Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).

    Google Scholar 

  • 7.

    Palmeirim, A. F., Peres, C. A. & Rosas, F. C. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol. Conserv. 174, 30–38 (2014).

    Google Scholar 

  • 8.

    Fearnside, P. M. Decision making on amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 6, 313–325 (2013).

  • 9.

    Fearnside, P. M. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ. Res. Lett. 11, 011002 (2016).

    Google Scholar 

  • 10.

    Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Chen, G., Powers, R. P., de Carvalho, L. M. & Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 63, 1–8 (2015).

    Google Scholar 

  • 12.

    Hunter, W. C., Anderson, B. W. & Ohmart, R. D. Avian community structure changes in a mature floodplain forest after extensive flooding. J. Wildl. Manag. 51, 495–502 (1987).

  • 13.

    Andriolo, A. et al. Severe population decline of marsh deer, Blastocerus dichotomus (Cetartiodactyla: Cervidae), a threatened species, caused by flooding related to a hydroelectric power plant. Zool. Curitiba 30, 630–638 (2013).

    Google Scholar 

  • 14.

    Irving, G. J., Round, P. D., Savini, T., Lynam, A. J. & Gale, G. A. Collapse of a tropical forest bird assemblage surrounding a hydroelectric reservoir. Glob. Ecol. Conserv. 16, e00472 (2018).

    Google Scholar 

  • 15.

    Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Quigley, H. et al. Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436 (2017).

  • 17.

    Dinerstein, E. et al. The fate of wild tigers. BioScience 57, 508–514 (2007).

    Google Scholar 

  • 18.

    Goodrich, J. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015: e.T15955A50659951 (2015).

  • 19.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Roberge, J. & Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85 (2004).

    Google Scholar 

  • 21.

    Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution—application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    GTRP. Global Tiger Recovery Program. Glob. Tiger Initiat. Secr. (World Bank, 2010).

  • 23.

    Desbiez, A. L. & de Paula, R. C. Species conservation planning: the jaguar National Action Plan for Brazil. Cat News 7, 4–7 (2012).

    Google Scholar 

  • 24.

    Achard, F. et al. Determination of deforestation rates of the world’s humid tropical forests. Science 297, 999–1002 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS 

    Google Scholar 

  • 26.

    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Sollmann, R., Torres, N. M. & Silveira, L. Jaguar conservation in Brazil: the role of protected areas. Cat News 4, 15 (2008).

    Google Scholar 

  • 29.

    Cullen Junior, L., Sana, D. A., Lima, F., de Abreu, K. C. & Uezu, A. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), in the upper Paraná River, Brazil. Zool. Curitiba 30, 379–387 (2013).

    Google Scholar 

  • 30.

    Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology https://doi.org/10.1002/ecy.3543 (2021).

  • 31.

    Sanderson, E. W. How many animals do we want to save? The many ways of setting population target levels for conservation. BioScience 56, 911–922 (2006).

    Google Scholar 

  • 32.

    Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1–9 (2017).

    Google Scholar 

  • 33.

    Wikramanayake, E. et al. A landscape‐based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).

    Google Scholar 

  • 34.

    Sunarto, S. et al. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS ONE 7, e30859 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Hyde, J. L., Bohlman, S. A. & Valle, D. Transmission lines are an under-acknowledged conservation threat to the Brazilian Amazon. Biol. Conserv. 228, 343–356 (2018).

    Google Scholar 

  • 36.

    Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).

    Google Scholar 

  • 38.

    Linkie, M., Haidir, I. A., Nugroho, A. & Dinata, Y. Conserving tigers Panthera tigris in selectively logged Sumatran forests. Biol. Conserv. 141, 2410–2415 (2008).

    Google Scholar 

  • 39.

    Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 20131506 (2013).

    Google Scholar 

  • 40.

    Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17, 245–257 (2003).

    Google Scholar 

  • 41.

    Ramesh, K. et al. Status of tiger and prey species in Panna Tiger Reserve, Madhya Pradesh: capture-recapture and distance sampling estimates. Technical Report (Wildlife Institute of India, 2013).

  • 42.

    Romero‐Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2019).

    Google Scholar 

  • 43.

    Alho, C. J. Hydropower dams and reservoirs and their impacts on Brazil’s biodiversity and natural habitats: a review. World J. Adv. Res. Rev. 6, 205–215 (2020).

    Google Scholar 

  • 44.

    Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).

    PubMed 

    Google Scholar 

  • 45.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS 

    Google Scholar 

  • 46.

    Fearnside, P. M. Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ. Manag. 13, 401–423 (1989).

    Google Scholar 

  • 47.

    Fearnside, P. M. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River Basin. Environ. Manag. 38, 16–27 (2006).

    Google Scholar 

  • 48.

    Milder, J. C., Scherr, S. J. & Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 15, 4 (2010).

  • 49.

    Ceballos, G. et al. Jaguar distribution, biological corridors and protected areas in Mexico: from science to public policies. Landsc. Ecol. https://doi.org/10.1007/s10980-021-01264-0 (2021).

  • 50.

    Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

    PubMed 

    Google Scholar 

  • 51.

    Sabu, M. M., Pasha, S. V., Reddy, C. S., Singh, R. & Jaishanker, R. The effectiveness of tiger conservation landscapes in decreasing deforestation in South Asia: a remote sensing-based study. Spat. Inf. Res. 1–13, https://doi.org/10.1007/s41324-021-00411-8 (2021).

  • 52.

    Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).

    Google Scholar 

  • 54.

    Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457–3466 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Food and agriculture organization of the united nations. AQUASTAT – FAO’s global information system on water and agriculture. https://www.fao.org/aquastat/en/databases/dams (2016).

  • 56.

    Tortato, F. R. et al. Infanticide in a jaguar (Panthera onca) population—does the provision of livestock carcasses increase the risk? Acta Ethol. 20, 69–73 (2017).

    Google Scholar 

  • 57.

    Chanchani, P., Gerber, B. D. & Noon, B. R. Elevated potential for intraspecific competition in territorial carnivores occupying fragmented landscapes. Biol. Conserv. 227, 275–283 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    A constraint on historic growth in global photosynthesis due to increasing CO2

    A tool to speed development of new solar cells