in

Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia

  • 1.

    Baker, A. & Brooks, R. Terrestrial higher plants which hyperaccumulate metallic elements, a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126 (1989).

    CAS 

    Google Scholar 

  • 2.

    Reeves, R. D. et al. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218, 407–411 (2018).

    PubMed 

    Google Scholar 

  • 3.

    Reeves, R. D., Baker, A. J. M., Borhidi, A. & Berazaín, R. Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol. 133, 217–224 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Reeves, R., Baker, A., Borhidi, A. & Berazaín Iturralde, R. Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Bot. 83, 29–38 (1999).

    CAS 

    Google Scholar 

  • 5.

    Whiting, S. N. et al. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 12, 106–116 (2004).

    Google Scholar 

  • 6.

    Jaffré, T., Pillon, Y., Thomine, S. & Merlot, S. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front. Plant Sci. 4, 279 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Losfeld, G. et al. Leaf-age and soil–plant relationships: Key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ. Sci. Pollut. Res. Int. 22, 5620–5632 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Gei, V. et al. Tools for the discovery of hyperaccumulator plant species and understanding their ecophysiology. In Agromining: Farming for metals: Extracting unconventional resources using plants (eds Van der Ent, A. et al.) 117–133 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-61899-9_7.

    Chapter 

    Google Scholar 

  • 9.

    Gei, V. et al. A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot. J. Linn. Soc. 194, 1–22 (2020).

    Google Scholar 

  • 10.

    Grison, C., Escande, V. & Biton, J. Ecocatalysis: A New Integrated Approach to Scientific Ecology (Elsevier, 2015).

    Google Scholar 

  • 11.

    Grison, C. Special issue in environmental science and pollution research: Combining phytoextraction and ecocatalysis: an environmental, ecological, ethic and economic opportunity. Environ. Sci. Pollut. Res. 22, 5589–5698 (2015).

    Google Scholar 

  • 12.

    Grison, C., Escande, V. & Olszewski, T. K. Ecocatalysis: A new approach toward bioeconomy, chapter 25. In Bioremediation and Bioeconomy (ed. Prasad, M. N. V.) 629–663 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-802830-8.00025-3.

    Chapter 

    Google Scholar 

  • 13.

    Deyris, P.-A. & Grison, C. Nature, ecology and chemistry: An unusual combination for a new green catalysis, ecocatalysis. Curr. Opin. Green Sustain. Chem. 10, 6–10 (2018).

    Google Scholar 

  • 14.

    Grison, C. & LockToyKi, Y. Ecocatalysis, a new vision of green and sustainable chemistry. Curr. Opin. Green Sustain. Chem. 29, 100461 (2021).

    Google Scholar 

  • 15.

    Chaney, R. L., Angle, J. S., Li, Y.-M. & Baker, A. J. M. Recuperation de metaux presents dans des sols (2000).

  • 16.

    Chaney, R. L. et al. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 36, 1429–1443 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Li, Y.-M. et al. Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant Soil 249, 107–115 (2003).

    CAS 

    Google Scholar 

  • 18.

    Strawn, K. Unearthing the habitat of a hyperaccumulator: Case study of the invasive plant yellowtuft (Alyssum; Brassicaceae) in Southwest Oregon, USA. Manag. Biol. Invasions 4, 249–259 (2013).

    Google Scholar 

  • 19.

    Grison, C. et al. Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv. 3, 22340–22345 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Lange, B. et al. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere 146, 75–84 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Grison, C. M. et al. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ. Sci. Pollut. Res. 22, 5667–5676 (2015).

    CAS 

    Google Scholar 

  • 22.

    Escande, V. et al. Ecological catalysis and phytoextraction: Symbiosis for future. Appl. Catal. B 146, 279–288 (2014).

    CAS 

    Google Scholar 

  • 23.

    Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (Springer, 2018). https://doi.org/10.1007/978-3-319-61899-9_19

  • 24.

    Lahl, U. & Hawxwell, K. A. REACH—The new European chemicals law. Environ. Sci. Technol. 40, 7115–7121 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Sarrailh, J.-M. La revégétalisation des exploitations minières: l’exemple de la Nouvelle-Calédonie. Bois For. Trop. (2002).

  • 26.

    Losfeld, G. et al. Phytoextraction from mine spoils: Insights from New Caledonia. Environ. Sci. Pollut. Res. 22, 5608–5619 (2015).

    CAS 

    Google Scholar 

  • 27.

    Garel, C. et al. Structure and composition of first biosourced Mn-rich catalysts with a unique vegetal footprint. Mater. Today Sustain. https://doi.org/10.1016/j.mtsust.2019.100020 (2019).

    Article 

    Google Scholar 

  • 28.

    Jaffré, T. Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. Compt. Rend. Acad. Sci. (Paris) Sér. D 289, 425–428 (1979).

    Google Scholar 

  • 29.

    Jaffré, T. Plantes de Nouvelle Calédonie permettant de revégétaliser des sites miniers (SLN, 1992).

    Google Scholar 

  • 30.

    Jaffré, T. Accumulation du manganèse par des espèces associées aux terrains ultrabasiques de Nouvelle Calédonie. Compt. Rend. Acad. Sci. Paris Sér. D 284, 1573–1575 (1977).

    Google Scholar 

  • 31.

    Luçon, S., Marion, F., Niel, J. F. & Pelletier, B. Réhabilitation des sites miniers sur roches ultramafiques en Nouvelle-Calédonie. In Ecologie des milieux sur roches ultramafiques et sur sols métallifères: actes de la deuxième conférence internationale sur l’écologie des milieux serpentiniques Vol. III (eds Jaffré, T. et al.) 297–303 (ORSTOM, 1997).

    Google Scholar 

  • 32.

    Reeves, R. D. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249, 57–65 (2003).

    CAS 

    Google Scholar 

  • 33.

    L’Huillier, L. et al. La restauration des sites miniers. In Mines et environnement en Nouvelle Calédonie: les milieux sur substrats ultramafiques et leur restauration (eds L’Huillier, L. et al.) 147–230 (IAC, 2010).

    Google Scholar 

  • 34.

    Udo, H., Barrault, J. & Gâteblé, G. Multiplication et valorisation horticole de plantes indigènes à la Nouvelle-Calédonie: Compte-rendu des essais 2011 (2011).

  • 35.

    Jaffré, T. Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie (ORSTOM, 1980).

    Google Scholar 

  • 36.

    Baker, A., Mcgrath, S., Reeves, R. & Smith, J. A. C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediat. Contamin. Soil Water. https://doi.org/10.1201/9780367803148-5 (2000).

    Article 

    Google Scholar 

  • 37.

    Bihanic, C., Richards, K., Olszewski, T. K. & Grison, C. Eco-Mn ecocatalysts: Toolbox for sustainable and green Lewis acid catalysis and oxidation reactions. ChemCatChem 12, 1529–1545 (2020).

    CAS 

    Google Scholar 

  • 38.

    Pillon, Y., Munzinger, J., Amir, H. & Lebrun, M. Ultramafic soils and species sorting in the flora of New Caledonia. J. Ecol. 98, 1108–1116 (2010).

    Google Scholar 

  • 39.

    Bidwell, S. D., Woodrow, I. E., Batianoff, G. N. & Sommer-Knudsen, J. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct. Plant Biol. 29, 899–905 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Fernando, D. R. et al. Foliar Mn accumulation in eastern Australian herbarium specimens: Prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann. Bot. 103, 931–939 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Mizuno, T. et al. Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J. Plant Nutr. 31, 1811–1819 (2008).

    CAS 

    Google Scholar 

  • 42.

    Xue, S. G. et al. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ. Pollut. 131, 393–399 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Yang, S. X., Deng, H. & Li, M. S. Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ. 54, 441–446 (2008).

    CAS 

    Google Scholar 

  • 44.

    Proctor, J., Phillipps, C., Duff, G. K., Heaney, A. & Robertson, F. M. Ecological studies on Gunung Silam, a small ultrabasic Mountain in Sabah, Malaysia. II. Some Forest Processes. J. Ecol. 77, 317–331 (1989).

    CAS 

    Google Scholar 

  • 45.

    Graham, R. D., Hannam, R. J. & Uren, N. C. Manganese in Soils and Plants. https://doi.org/10.1007/978-94-009-2817-6 (Springer Netherlands, 1988).

  • 46.

    Loneragan, J. F. Distribution and movement of manganese in plants. In Manganese in Soils and Plants (eds Graham, R. D. et al.) 113–124 (Springer Netherlands, 1988). https://doi.org/10.1007/978-94-009-2817-6_9.

    Chapter 

    Google Scholar 

  • 47.

    Taiz, L. & Zeiger, E. Plant Physiology 3rd edn. (Sinauer Associates Inc., 2002).

    Google Scholar 

  • 48.

    Burnell, J. N. The biochemistry of manganese in plants. In Manganese in Soils and Plants (eds Graham, R. D. et al.) 125–137 (Springer Netherlands, 1988). https://doi.org/10.1007/978-94-009-2817-6_10.

    Chapter 

    Google Scholar 

  • 49.

    Lidon, F. C., Barreiro, M. G. & Ramalho, J. C. Manganese accumulation in rice: Implications for photosynthetic functioning. J. Plant Physiol. 161, 1235–1244 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 15, 397–409 (2015).

    Google Scholar 

  • 51.

    Schmidt, S. B., Jensen, P. E. & Husted, S. Manganese deficiency in plants: The impact on photosystem II. Trends Plant Sci. 21, 622–632 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Wissemeier, A. H. & Horst, W. J. Simplified methods for screening cowpea cultivars for manganese leaf-tissue tolerance. Crop Sci. 31, 435–439 (1991).

    CAS 

    Google Scholar 

  • 53.

    Joardar Mukhopadhyay, M. & Sharma, A. Manganese in cell metabolism of higher plants. Bot. Rev. 57, 117–149 (1991).

    Google Scholar 

  • 54.

    Lynch, J. & St. Clair, S. Mineral stress: The missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res. 90, 101–115 (2004).

    Google Scholar 

  • 55.

    Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci 11, 300 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Shao, J. F., Yamaji, N., Shen, R. F. & Ma, J. F. The key to Mn homeostasis in plants: Regulation of Mn transporters. Trends Plant Sci. 22, 215–224 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Millaleo, R., Reyes-Diaz, M., Ivanov, A. G., Mora, M. L. & Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 10, 470–481 (2010).

    Google Scholar 

  • 58.

    Vázquez, M. D. et al. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant Physiol. 140, 350–355 (1992).

    Google Scholar 

  • 59.

    Krämer, U., Grime, G. W., Smith, J. A. C., Hawes, C. R. & Baker, A. J. M. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instrum. Methods Phys. Res. Sect. B 130, 346–350 (1997).

    ADS 

    Google Scholar 

  • 60.

    Küpper, H., Lombi, E., Zhao, F.-J. & McGrath, S. P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212, 75–84 (2000).

    PubMed 

    Google Scholar 

  • 61.

    Küpper, H., Lombi, E., Zhao, F.-J., Wieshammer, G. & McGrath, S. P. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 52, 2291–2300 (2001).

    PubMed 

    Google Scholar 

  • 62.

    Mesjasz-Przybyłowicz, J., Przybyłowicz, W. & Pineda, C. Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. S. Afr. J. Sci. 97, 591 (2001).

    Google Scholar 

  • 63.

    Robinson, B. H., Lombi, E., Zhao, F. J. & McGrath, S. P. Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol. 158, 279–285 (2003).

    CAS 

    Google Scholar 

  • 64.

    Bidwell, S. D., Crawford, S. A., Woodrow, I. E., Sommer-Knudsen, J. & Marshall, A. T. Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ. 27, 705–716 (2004).

    CAS 

    Google Scholar 

  • 65.

    Memon, A. R., Chino, M., Takeoka, Y., Hara, K. & Yatazawa, M. Distribution of manganese in leaf tissues of manganese accumulator: Acanthopanax sciadophylloides as revealed by Electronprobe X-Ray Microanalyzer. J. Plant Nutr. 2, 457–476 (1980).

    CAS 

    Google Scholar 

  • 66.

    Memon, A. R., Chino, M., Hara, K. & Yatazawa, M. Microdistribution of manganese in the leaf tissues of different plant species as revealed by X-ray microanalyzer. Physiol. Plant. 53, 225–232 (1981).

    CAS 

    Google Scholar 

  • 67.

    Xu, X. et al. Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285, 323–331 (2006).

    CAS 

    Google Scholar 

  • 68.

    Fernando, D. R. et al. Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Funct. Plant Biol. 35, 193 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Fernando, D. R. et al. Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: Populational variation and localization by X-ray microanalysis. New Phytol. 177, 178–185 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Fernando, D. R. et al. Manganese accumulation in the leaf mesophyll of four tree species: A PIXE/EDAX localization study. New Phytol. 171, 751–757 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Fernando, D. R. et al. Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293, 145–152 (2007).

    CAS 

    Google Scholar 

  • 72.

    Fernando, D. R., Marshall, A., Baker, A. J. M. & Mizuno, T. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions. Front. Plant Sci. 4, 319 (2013).

  • 73.

    Fernando, D. R., Woodrow, I. E., Baker, A. J. M. & Marshall, A. T. Plant homeostasis of foliar manganese sinks: Specific variation in hyperaccumulators. Planta 236, 1459–1470 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Fernando, D. R., Marshall, A. T. & Green, P. T. Cellular ion interactions in two endemic tropical rainforest species of a novel metallophytic tree genus. Tree Physiol. 38, 119–128 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Bihanic, C. et al. Eco-CaMnOx: A greener generation of eco-catalysts for eco-friendly oxidation processes. ACS Sustain. Chem. Eng. 8, 4044–4057 (2020).

    CAS 

    Google Scholar 

  • 76.

    Park, Y. J. & Doeff, M. M. Synthesis and electrochemical characterization of M2Mn3O8 (M = Ca, Cu) compounds and derivatives. Solid State Ion. 177, 893–900 (2006).

    CAS 

    Google Scholar 

  • 77.

    Harper, F. A. et al. Metal coordination in hyperaccumulating plants studied using EXAFS. In Synchrotron Radiation Department Scientific Reports 102 (eds Murphy, B. et al.) (Central Laboratory of Research Councils, 1999).

    Google Scholar 

  • 78.

    Rabier, J., Laffont-Schwob, I., Notonier, R., Fogliani, B. & Bouraïma-Madjèbi, S. Anatomical element localization by EDXS in Grevillea exul var. exul under nickel stress. Environ. Pollut. 156, 1156–1163 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Fernando, D. R., Mizuno, T., Woodrow, I. E., Baker, A. J. M. & Collins, R. N. Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol. 188, 1014–1027 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Fritsch, E. Les sols. In Atlas de la Nouvelle Calédonie (eds Bonvallot, J. et al.) 73–76 (IRD, 2012).

    Google Scholar 

  • 81.

    Isnard, S., L’huillier, L., Rigault, F. & Jaffré, T. How did the ultramafic soils shape the flora of the New Caledonian hotspot?. Plant Soil 403, 53–76 (2016).

    CAS 

    Google Scholar 

  • 82.

    Jaffré, T. Composition chimique et conditions de l’alimentation minérale des plantes sur roches ultrabasiques (Nouvelle Calédonie). Cah. ORSTOM. Sér. Biol. 11, 53–63 (1976).

    Google Scholar 

  • 83.

    Majourau, P. & Pillon, Y. A review of Grevillea (Proteaceae) from New Caledonia with the description of two new species. Phytotaxa 477, 243–252 (2020).

    Google Scholar 

  • 84.

    Jaffré, T. & Latham, M. Contribution à l’étude des relations sol-végétation sur un massif de roches ultrabasiques de la côte Ouest de la Nouvelle Calédonie: le Boulinda. Adansonia. Série 2(14), 311–336 (1974).

    Google Scholar 

  • 85.

    L’Huillier, L. et al. Mines et environnement en Nouvelle-Caledonie: les milieux sur substrats ultramafiques et leur restauration (IAC, 2010).

    Google Scholar 

  • 86.

    Purnell, H. M. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust. J. Bot. 8, 38–50 (1960).

    Google Scholar 

  • 87.

    Lamont, B. B. Structure, ecology and physiology of root clusters—A review. Plant Soil 248, 1–19 (2003).

    CAS 

    Google Scholar 

  • 88.

    Shane, M. W. & Lambers, H. Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol. Plant. 124, 441–450 (2005).

    CAS 

    Google Scholar 

  • 89.

    Dinkelaker, B., Hengeler, C. & Marschner, H. Distribution and function of proteoid roots and other root clusters. Bot. Acta 108, 183–200 (1995).

    Google Scholar 

  • 90.

    Castillo-Michel, H. A., Larue, C., Pradas del Real, A. E., Cotte, M. & Sarret, G. Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol. Biochem. 110, 13–32 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Vantelon, D. et al. The LUCIA beamline at SOLEIL. J. Synchrotron Radiat. 23, 635–640 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 92.

    Solé, V. A., Papillon, E., Cotte, M., Walter, P. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B 62, 63–68 (2007).

    ADS 

    Google Scholar 

  • 93.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Losfeld, G. L’association de la phytoextraction et de l’écocatalyse : un nouveau concept de chimie verte, une opportunité pour la remédiation de sites miniers. (Montpellier 2, 2014).

  • 96.

    van der Ent, A. et al. X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. Plant Soil. https://doi.org/10.1007/s11104-019-04386-2 (2020).

    Article 

    Google Scholar 

  • 97.

    Belli, M. et al. X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Commun. 35, 355–361 (1980).

    ADS 
    CAS 

    Google Scholar 

  • 98.

    van der Ent, A. et al. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol. 218, 432–452 (2018).

    PubMed 

    Google Scholar 

  • 99.

    Neumann, G. & Martinoia, E. Cluster roots—An underground adaptation for survival in extreme environments. Trends Plant Sci. 7, 162–167 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 100.

    Memon, A. R. & Yatazawa, M. Nature of manganese complexes in manganese accumulator plant—Acanthopanax sciadophylloides. J. Plant Nutr. 7, 961–974 (1984).

    CAS 

    Google Scholar 

  • 101.

    Xu, X., Shi, J., Chen, X., Chen, Y. & Hu, T. Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318, 197 (2008).

    Google Scholar 

  • 102.

    Fernando, D. R., Baker, A. J. M. & Woodrow, I. E. Physiological responses in Macadamia integrifolia on exposure to manganese treatment. Aust. J. Bot. 57, 406 (2009).

    CAS 

    Google Scholar 

  • 103.

    Fernando, D. R., Batianoff, G. N., Baker, A. J. & Woodrow, I. E. In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ. 29, 1012–1020 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 104.

    Léon, V. et al. Effects of three nickel salts on germinating seeds of Grevillea exul var. rubiginosa, an endemic serpentine Proteaceae. Ann. Bot. https://doi.org/10.1093/aob/mci066 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Jaffré, T., Latham, M. & Schmid, M. Aspects de l’influence de l’extraction du minerai de nickel sur la végétation et les sols en Nouvelle-Calédonie. Cah. ORSTOM. Sér. Biol. 12, 307–321 (1977).

    Google Scholar 

  • 106.

    Boyd, R. S. & Martens, S. The raison d’etre for metal hyperaccumulation by plants (1992).

  • 107.

    Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I. & Salt, D. E. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 122, 1343–1353 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Asemaneh, T., Ghaderian, S. M., Crawford, S. A., Marshall, A. T. & Baker, A. J. M. Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta 225, 193–202 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 109.

    Küpper, H., Jie Zhao, F. & McGrath, S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305–312 (1999).

    PubMed Central 

    Google Scholar 

  • 110.

    Abubakari, F. et al. Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt and zinc in the genus Gossia (Myrtaceae). Metallomics https://doi.org/10.1093/mtomcs/mfab008 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 111.

    White, P. J. Long-distance transport in the xylem and phloem, chapter 3. In Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 49–70 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-384905-2.00003-0.

    Chapter 

    Google Scholar 

  • 112.

    Marschner, H. Marschner’s Mineral Nutrition of Higher Plants (Academic Press, 2012). https://doi.org/10.1016/C2009-0-63043-9.

    Book 

    Google Scholar 

  • 113.

    Fernando, D. R. et al. Does foliage metal accumulation influence plant-insect interactions? A field study of two sympatric tree metallophytes. Funct. Plant Biol. 45, 945–956 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 114.

    Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 45, 581 (1968).

    CAS 

    Google Scholar 

  • 115.

    Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 11, 300 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 116.

    Hirschi, K. D., Korenkov, V. D., Wilganowski, N. L. & Wagner, G. J. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124, 125–134 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Wu, Z. et al. An endoplasmic reticulum-bound Ca(2+)/Mn(2+) pump, ECA1, supports plant growth and confers tolerance to Mn(2+) stress. Plant Physiol. 130, 128–137 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Pittman, J. K. Managing the manganese: Molecular mechanisms of manganese transport and homeostasis. New Phytol. 167, 733–742 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 119.

    Mills, R. F. et al. ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol. 146, 116–128 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Mizuno, T., Emori, K. & Ito, S. Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation. Soil Sci. Plant Nutr. 59, 591–602 (2013).

    CAS 

    Google Scholar 

  • 121.

    Tordoff, G. M., Baker, A. J. M. & Willis, A. J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41, 219–228 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 122.

    Grossnickle, S. & Ivetic, V. Direct seeding in reforestation—A field performance review. REFORESTA https://doi.org/10.21750/REFOR.4.07.46 (2017).

    Article 

    Google Scholar 

  • 123.

    Bermúdez-Contreras, A. I., Ede, F., Waymouth, V., Miller, R. & Aponte, C. Revegetation technique changes root mycorrhizal colonisation and root fungal communities: The advantage of direct seeding over transplanting tube-stock in riparian ecosystems. Plant Ecol. https://doi.org/10.1007/s11258-020-01031-2 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A tool to speed development of new solar cells

    Commensal Pseudomonas protect Arabidopsis thaliana from a coexisting pathogen via multiple lineage-dependent mechanisms