Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274(1608), 303–313 (2007).
Google Scholar
Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).
Google Scholar
Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).
Google Scholar
Ribbands, C. R. The scent perception of the honey bee. Proc. R. Soc. Lond. B 143(912), 367–379 (1955).
Google Scholar
von Frisch, K. The Dance Language and Orientation of Bees (Harvard University Press, 1967).
Reinhard, J., Srinivasan, M. V., Guez, D. & Zhang, S. W. Floral scents induce recall of navigational and visual memories in honeybees. J. Exp. Biol. 207(25), 4371–4381 (2004).
Google Scholar
Arenas, A., Fernández, V. M. & Farina, W. M. Floral odor learning within the hive affects honeybees’ foraging decisions. Naturwissenschaften 94, 218–222 (2007).
Google Scholar
Farina, W. M., Grüter, C. & Díaz, P. C. Social learning of floral odours inside the honeybee hive. Proc. R. Soc. Lond. B. 272(1575), 1923–1928 (2005).
Farina, W. M., Grüter, C., Acosta, L. & Mc Cabe, S. Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 94(1), 55–60 (2007).
Google Scholar
Grüter, C., Acosta, L. E. & Farina, W. M. Propagation of olfactory information within the honeybee hive. Behav. Ecol. Sociobiol. 60(5), 707–715 (2006).
Google Scholar
Arenas, A., Fernández, V. M. & Farina, W. M. Floral scents experienced within the colony affect long-term foraging preferences in honeybees. Apidologie 39, 714–722 (2008).
Google Scholar
Balbuena, M. S., Arenas, A. & Farina, W. M. Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment. Anim. Behav. 84, 77–83 (2012).
Google Scholar
Farina, W. M., Arenas, A., Díaz, P. C., Susic Martin, C. & Estravis Barcala, M. C. Learning of a mimic odor within beehives improves pollination service efficiency in a commercial crop. Curr. Biol. 30, 4284–4290. https://doi.org/10.1016/j.cub.2020.08.018 (2020).
Google Scholar
Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31(1), 65–75 (2017).
Google Scholar
Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8(4), 349–356 (1977).
Google Scholar
Chalisova, N. I. et al. Effect of encoding amino acids on associative learning of honeybee Apis mellifera. J. Evol. Biochem. Fisiol. 47(6), 607 (2011).
Google Scholar
Strauss, S. Y. & Whittall, J. B. Non-pollinator agents of selection on floral traits. In Ecology and Evolution of flowers (eds. Harder, L. D. & Barret, S. C. H.) 120–138 (Oxford University Press, 2006).
McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).
Google Scholar
Gatica Hernández, I., Palottini, F., Macri, I., Galmarini, C. R. & Farina, W. M. Appetitive behavior of the honey bee Apis mellifera in response to phenolic compounds naturally found in nectars. J. Exp. Biol. https://doi.org/10.1242/jeb.189910 (2019).
Google Scholar
Stevenson, P. C. For antagonists and mutualists: The paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 19(3), 603–614 (2020).
Google Scholar
Carlesso, D., Smargiassi, S., Pasquini, E., Bertelli, G. & Baracchi, D. Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Sci. Rep. 11(1), 1–14 (2021).
Google Scholar
Kretschmar, J. A. & Baumann, T. W. Caffeine in Citrus flowers. Phytochemistry 52(1), 19–23 (1999).
Google Scholar
Wright, G. A. et al. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339(6124), 1202–1204 (2013).
Google Scholar
Couvillon, M. J. et al. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Curr. Biol. 25, 2815–2818 (2015).
Google Scholar
Arnold, S. E. et al. Bumble bees show an induced preference for flowers when primed with caffeinated nectar and a target floral odor. Curr. Biol. 31, 1–5 (2021).
Google Scholar
Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27(12), 2545–2558 (2001).
Google Scholar
Power, E. F., Stabler, D., Borland, A. M., Barnes, J. & Wright, G. A. Analysis of nectar from low-volume flowers: A comparison of collection methods for free amino acids. Methods Ecol. Evol. 9, 734–743 (2018).
Google Scholar
Terrab, A. et al. Analysis of amino acids in nectar from Silene colorata Poiret (Caryophyllaceae). Bot. J. Linn. Soc. 155, 49–56 (2007).
Google Scholar
Taha, E. K. A., Al-Kahtani, S. & Taha, R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J. Biol. Sci. 26, 232–237 (2019).
Google Scholar
Müller, U. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16, 541–549 (1996).
Google Scholar
Müller, U. The nitric oxide system in insects. Prog. Neurobiol. 51, 363–381 (1997).
Google Scholar
Lopatina, N. G., Zachepilo, T. H., Kamyshev, N. G. & Chalisova, N. I. The influence of combinations of encoded amino acids on associative learning in the honeybee Apis mellifera L. J. Evol. Biochem. Physiol. 53(2), 123–128 (2017).
Google Scholar
Marchi, I. L., Palottini, F. & Farina, W. M. Combined secondary compounds naturally found in nectars enhance honeybee cognition and survival. J. Exp. Biol. 224(6), jeb239616 (2021).
Google Scholar
Müller, U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27(1), 159–168 (2000).
Google Scholar
Negri, P. et al. Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie 44(5), 575–585 (2013).
Google Scholar
Lu, Y. H. et al. Identification of immune regulatory genes in Apis mellifera through caffeine treatment. Insects 11(8), 516 (2020).
Google Scholar
Delaplane, K. S. & Mayer, D. F. Crop Pollination by Bees (CAB International, 2000).
Cabrera, A. L. & Willink, A. Biogeografía de América Latina (Organización de Estados Americanos, 1973).
Gabai, A. et al. Protocol for Using Pollinators in Hybrid Seed Production: An Outline for Improving Pollinator Effectiveness. (International Seed Federation, 2018).
Torretta, J. P., Medan, D., Roig Alsina, A. H. & Montaldo, N. H. Visitantes florales diurnos del girasol (Helianthus annuus L., Asterales: Asteraceae) en la Argentina. Rev. Soc. Entomol. Argent. 69(1–2), 17–32 (2010).
Sáez, A., Sabatino, M. & Aizen, M. A. Interactive effects of large-and small-scale sources of feral honeybees for sunflower in the Argentine Pampas. PLoS One 7(1), e30968 (2012).
Google Scholar
Farina, W. M., Díaz, P. C. & Arenas, A. Patent AR082846B1: Una Formulación que Promueve la Polinización Dirigida de Abejas Melíferas Hacia Cultivos de Girasol (Instituto Nacional de Propiedad Intelectual, 2017).
Noetzel, D. M. Insect Pollination Results on Sunflower 108–112 (Department of Entomology North Dakota State University Fargo USA, 1968).
Johannsmeier, M. F. & Mostert, J. N. Crop pollination. In Beekeeping in South Africa, 3rd ed. 235–250 (ed. Johannsmeier, M. F.) (Plant Protection Research Institute handbook 14. Agricultural Research Council of South Africa, 2001).
R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing). https://www.R-project.org/ (2021).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
Google Scholar
Crawley, M. J. The R Book (Wiley, 2013).
Google Scholar
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.2.7. https://CRAN.R-project.org/package=DHARMa (2021).
Chambers, J. M. & Hastie, T. J. Statistical Models in S (Chapman and Hall, 1992).
Google Scholar
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.4., https://CRAN.R-project.org/package=emmeans (2021).
Source: Ecology - nature.com