Hebert, P. D. N., Muncaster, B. W. & Mackie, G. L. Ecological and genetic studies on Dreissena polymorpha (Pallas): A new mollusc in the Great Lakes. Can. J. Fish. Aquat. Sci. 46, 1587–1591 (1989).
May, B. & Marsden, J. E. Genetic identification and implications of another invasive species of dreissenid mussel in the Great Lakes. Can. J. Fish. Aquat. Sci. 49, 1501–1506 (1992).
Ackerman, J. D., Cottrell, C. M., Ethier, C. R., Allen, D. G. & Spelt, J. K. Attachment strength of zebra mussels on natural, polymeric, and metallic materials. J. Environ. Eng. ASCE 122, 141–148 (1996).
Google Scholar
Kobak, J. Attachment strength of Dreissena polymorph on artificial substrates. In The Zebra Mussel in Europe (eds van der Velde, G. et al.) 349–354 (Margraf Publishers, 2010).
Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: A review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).
Google Scholar
Karatayev, V. A., Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Lakewide dominance does not predict the potential for spread of dreissenids. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2013.09.007 (2013).
Google Scholar
Peyer, S. M., McCarthy, A. J. & Lee, C. E. Zebra mussels anchor byssal threads faster and tighter than quagga mussels in flow. J. Exp. Biol. https://doi.org/10.1242/jeb.028688 (2009).
Google Scholar
Amini, S. et al. Preventing mussel adhesion using lubricant-infused materials. Science 357, 668–673 (2017).
Google Scholar
Matsui, Y. et al. Attachment strength of Limnoperna fortunei on substrates, and their surface properties. Biofouling 17, 29–39 (2001).
Marsden, J. E. & Lansky, D. M. Substrate selection by settling zebra mussels, Dreissena polymorpha, relative to material, texture, orientation, and sunlight. Can. J. Zool. 78, 787–793 (2000).
Kobak, J. Factors influencing the attachment strength of Dreissena polymorpha (Bivalvia). Biofouling 22, 141–150 (2006).
Ackerman, J. D., Ethier, C. R., Allen, D. G. & Spelt, J. K. Investigation of zebra mussel adhesion strength using rotating disks. J. Environ. Eng. 118, 708–724 (1992).
Ackerman, J. D., Ethier, C. R., Spelt, J. K., Allen, D. G. & Cottrell, C. M. A wall jet to measure the attachment strength of zebra mussels. Can. J. Fish. Aquat. Sci. 52, 126–135 (1995).
Balogh, C., Serfőző, Z., bij de Vaate, A., Noordhuis, R. & Kobak, J. Biometry, shell resistance and attachment of zebra and quagga mussels at the beginning of their co-existence in large European lakes. J. Great Lakes Res. 45, 777–787 (2019).
Grutters, B. M. C., Verhofstad, M. J. J. M., van der Velde, G., Rajagopal, S. & Leuven, R. S. E. W. A comparative study of byssogenesis on zebra and quagga mussels: The effects of water temperature, salinity and light–dark cycle. Biofouling 28, 121–129 (2012).
Google Scholar
Naddafi, R. & Rudstam, L. G. Predator-induced behavioural defences in two competitive invasive species: The zebra mussel and the quagga mussel. Anim. Behav. 86, 1275–1284 (2013).
Bell, E. C. & Gosline, J. M. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017 (1996).
Google Scholar
Brazee, S. L. & Carrington, E. Interspecific comparison of the mechanical properties of mussel byssus. Biol. Bull. 211, 263–274 (2006).
Google Scholar
Burkett, J. R., Wojtas, J. L., Cloud, J. L. & Wilker, J. J. A method for measuring the adhesion strength of marine mussels. J. Adhes. 85, 601–615 (2009).
Google Scholar
Desmond, K. W., Zacchia, N. A., Waite, J. H. & Valentine, M. T. Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015).
Google Scholar
Hamada, N., Roman, V., Howell, S. & Wilker, J. Examining potential active tempering of adhesive curing by marine mussels. Biomimetics 2, 16 (2017).
Farsad, N. & Sone, E. D. Zebra mussel adhesion: Structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha. J. Struct. Biol. 177, 613–620 (2012).
Google Scholar
Stalder, A. F. et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 364, 72–81 (2010).
Google Scholar
Claxton, W. T., Wilson, A. B., Mackie, G. L. & Boulding, E. G. A genetic and morphological comparison of shallow- and deep-water populations of the introduced dreissenid bivalve Dreissena bugensis. Can. J. Zool. 76, 1269–1276 (1998).
Peyer, S. M., Hermanson, J. C. & Lee, C. E. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes. J. Exp. Biol. 213, 2602–2609 (2010).
Google Scholar
Sprung, M. Field and laboratory observations of Dreissena polymorpha larvae: Abundance, growth, mortality and food demands. Arch. Hydrobiol. 115, 537–561 (1989).
Nichols, S. J. Maintenance of the zebra mussel (Dreissena polymorpha) under laboratory conditions. In Zebra Mussels: Biology, Impacts, and Control (eds Nalepa, T. F. & Schloesser, D. W.) 733–747 (Lewis Publishers, 1992).
Porter, A. E. & Marsden, J. E. Adult zebra mussels (Dreissena polymorpha) avoid attachment to mesh materials. Northeast. Nat. 15, 589–594 (2008).
Kimmins, K. M., James, B. D., Nguyen, M. T., Hatton, B. D. & Sone, E. D. Oil-infused silicone prevents zebra mussel adhesion. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.9b00832 (2019).
Google Scholar
Peyer, S. M., Hermanson, J. C. & Lee, C. E. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion. J. Exp. Biol. 214, 2226–2236 (2011).
Google Scholar
Berkman, P. A., Garton, D. W., Haltuch, M. A., Kennedy, G. W. & Febo, L. R. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates. Biol. Invasions https://doi.org/10.1023/A:1010088925713 (2000).
Google Scholar
Skaja, A., Tordonato, D. & Merten, B. Coatings for invasive mussel control: Colorado river field study. In Biol. Manag. Invasive Quagga Zebra Mussels West. United States 451–466 (2015) https://doi.org/10.1201/b18447-37https://doi.org/10.1201/b18447-37.
Zhao, H., Robertson, N. B., Jewhurst, S. A. & Waite, J. H. Probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. https://doi.org/10.1074/jbc.M510792200 (2006).
Google Scholar
Kimmins, K. Freshwater Mussel Adhesion: Interfacial Structures & Antifouling Surfaces (Univesity of Toronto, 2020).
Kobak, J. Behavior of juvenile and adult zebra mussels (Dreissena polymorpha). In Quagga Zebra Mussel Biol. Impacts, Control 331–344 (2013) https://doi.org/10.1201/b15437-28.
Waite, J. H. Adhesion in byssally attached bivalves. Biol. Rev. 58, 209–231 (1983).
Google Scholar
Lachance, A. A., Myrand, B., Tremblay, R., Koutitonsky, V. & Carrington, E. Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2, 119–129 (2008).
Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 103, 12999–13003 (2006).
Google Scholar
Rzepecki, L. M. & Waite, J. H. The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation. Mol. Mar. Biol. Biotechnol. 2, 255–266 (1993).
Google Scholar
Waite, J. H. & Qin, X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40, 2887–2893 (2001).
Google Scholar
Zhao, H. & Waite, J. H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281, 26150–26158 (2006).
Google Scholar
Petrone, L. et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 6, 8737 (2015).
Google Scholar
Waite, J. H. Mussel adhesion—Essential footwork. J. Exp. Biol. 220, 517–530 (2017).
Google Scholar
Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).
Google Scholar
Ou, X. et al. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci. Adv. 6, eabb7620 (2020).
Google Scholar
Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N. & Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349, 628–632 (2015).
Google Scholar
Bilotto, P. et al. Adhesive properties of adsorbed layers of two recombinant mussel foot proteins with different levels of DOPA and tyrosine. Langmuir 35, 15481–15490 (2019).
Google Scholar
Kim, S. et al. Cation–π interaction in DOPA-deficient mussel adhesive protein mfp-1. J. Mater. Chem. B 3, 738–743 (2015).
Google Scholar
Source: Ecology - nature.com