in

Attachment of zebra and quagga mussel adhesive plaques to diverse substrates

  • 1.

    Hebert, P. D. N., Muncaster, B. W. & Mackie, G. L. Ecological and genetic studies on Dreissena polymorpha (Pallas): A new mollusc in the Great Lakes. Can. J. Fish. Aquat. Sci. 46, 1587–1591 (1989).

    Google Scholar 

  • 2.

    May, B. & Marsden, J. E. Genetic identification and implications of another invasive species of dreissenid mussel in the Great Lakes. Can. J. Fish. Aquat. Sci. 49, 1501–1506 (1992).

    Google Scholar 

  • 3.

    Ackerman, J. D., Cottrell, C. M., Ethier, C. R., Allen, D. G. & Spelt, J. K. Attachment strength of zebra mussels on natural, polymeric, and metallic materials. J. Environ. Eng. ASCE 122, 141–148 (1996).

    CAS 

    Google Scholar 

  • 4.

    Kobak, J. Attachment strength of Dreissena polymorph on artificial substrates. In The Zebra Mussel in Europe (eds van der Velde, G. et al.) 349–354 (Margraf Publishers, 2010).

    Google Scholar 

  • 5.

    Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: A review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).

    CAS 

    Google Scholar 

  • 6.

    Karatayev, V. A., Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Lakewide dominance does not predict the potential for spread of dreissenids. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2013.09.007 (2013).

    Article 

    Google Scholar 

  • 7.

    Peyer, S. M., McCarthy, A. J. & Lee, C. E. Zebra mussels anchor byssal threads faster and tighter than quagga mussels in flow. J. Exp. Biol. https://doi.org/10.1242/jeb.028688 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Amini, S. et al. Preventing mussel adhesion using lubricant-infused materials. Science 357, 668–673 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Matsui, Y. et al. Attachment strength of Limnoperna fortunei on substrates, and their surface properties. Biofouling 17, 29–39 (2001).

    Google Scholar 

  • 10.

    Marsden, J. E. & Lansky, D. M. Substrate selection by settling zebra mussels, Dreissena polymorpha, relative to material, texture, orientation, and sunlight. Can. J. Zool. 78, 787–793 (2000).

    Google Scholar 

  • 11.

    Kobak, J. Factors influencing the attachment strength of Dreissena polymorpha (Bivalvia). Biofouling 22, 141–150 (2006).

    Google Scholar 

  • 12.

    Ackerman, J. D., Ethier, C. R., Allen, D. G. & Spelt, J. K. Investigation of zebra mussel adhesion strength using rotating disks. J. Environ. Eng. 118, 708–724 (1992).

    Google Scholar 

  • 13.

    Ackerman, J. D., Ethier, C. R., Spelt, J. K., Allen, D. G. & Cottrell, C. M. A wall jet to measure the attachment strength of zebra mussels. Can. J. Fish. Aquat. Sci. 52, 126–135 (1995).

    Google Scholar 

  • 14.

    Balogh, C., Serfőző, Z., bij de Vaate, A., Noordhuis, R. & Kobak, J. Biometry, shell resistance and attachment of zebra and quagga mussels at the beginning of their co-existence in large European lakes. J. Great Lakes Res. 45, 777–787 (2019).

    Google Scholar 

  • 15.

    Grutters, B. M. C., Verhofstad, M. J. J. M., van der Velde, G., Rajagopal, S. & Leuven, R. S. E. W. A comparative study of byssogenesis on zebra and quagga mussels: The effects of water temperature, salinity and light–dark cycle. Biofouling 28, 121–129 (2012).

    PubMed 

    Google Scholar 

  • 16.

    Naddafi, R. & Rudstam, L. G. Predator-induced behavioural defences in two competitive invasive species: The zebra mussel and the quagga mussel. Anim. Behav. 86, 1275–1284 (2013).

    Google Scholar 

  • 17.

    Bell, E. C. & Gosline, J. M. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Brazee, S. L. & Carrington, E. Interspecific comparison of the mechanical properties of mussel byssus. Biol. Bull. 211, 263–274 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Burkett, J. R., Wojtas, J. L., Cloud, J. L. & Wilker, J. J. A method for measuring the adhesion strength of marine mussels. J. Adhes. 85, 601–615 (2009).

    CAS 

    Google Scholar 

  • 20.

    Desmond, K. W., Zacchia, N. A., Waite, J. H. & Valentine, M. T. Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Hamada, N., Roman, V., Howell, S. & Wilker, J. Examining potential active tempering of adhesive curing by marine mussels. Biomimetics 2, 16 (2017).

    Google Scholar 

  • 22.

    Farsad, N. & Sone, E. D. Zebra mussel adhesion: Structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha. J. Struct. Biol. 177, 613–620 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Stalder, A. F. et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 364, 72–81 (2010).

    CAS 

    Google Scholar 

  • 24.

    Claxton, W. T., Wilson, A. B., Mackie, G. L. & Boulding, E. G. A genetic and morphological comparison of shallow- and deep-water populations of the introduced dreissenid bivalve Dreissena bugensis. Can. J. Zool. 76, 1269–1276 (1998).

    Google Scholar 

  • 25.

    Peyer, S. M., Hermanson, J. C. & Lee, C. E. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes. J. Exp. Biol. 213, 2602–2609 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Sprung, M. Field and laboratory observations of Dreissena polymorpha larvae: Abundance, growth, mortality and food demands. Arch. Hydrobiol. 115, 537–561 (1989).

    Google Scholar 

  • 27.

    Nichols, S. J. Maintenance of the zebra mussel (Dreissena polymorpha) under laboratory conditions. In Zebra Mussels: Biology, Impacts, and Control (eds Nalepa, T. F. & Schloesser, D. W.) 733–747 (Lewis Publishers, 1992).

    Google Scholar 

  • 28.

    Porter, A. E. & Marsden, J. E. Adult zebra mussels (Dreissena polymorpha) avoid attachment to mesh materials. Northeast. Nat. 15, 589–594 (2008).

    Google Scholar 

  • 29.

    Kimmins, K. M., James, B. D., Nguyen, M. T., Hatton, B. D. & Sone, E. D. Oil-infused silicone prevents zebra mussel adhesion. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.9b00832 (2019).

    Article 

    Google Scholar 

  • 30.

    Peyer, S. M., Hermanson, J. C. & Lee, C. E. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion. J. Exp. Biol. 214, 2226–2236 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Berkman, P. A., Garton, D. W., Haltuch, M. A., Kennedy, G. W. & Febo, L. R. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates. Biol. Invasions https://doi.org/10.1023/A:1010088925713 (2000).

    Article 

    Google Scholar 

  • 32.

    Skaja, A., Tordonato, D. & Merten, B. Coatings for invasive mussel control: Colorado river field study. In Biol. Manag. Invasive Quagga Zebra Mussels West. United States 451–466 (2015) https://doi.org/10.1201/b18447-37https://doi.org/10.1201/b18447-37.

  • 33.

    Zhao, H., Robertson, N. B., Jewhurst, S. A. & Waite, J. H. Probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. https://doi.org/10.1074/jbc.M510792200 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Kimmins, K. Freshwater Mussel Adhesion: Interfacial Structures & Antifouling Surfaces (Univesity of Toronto, 2020).

    Google Scholar 

  • 35.

    Kobak, J. Behavior of juvenile and adult zebra mussels (Dreissena polymorpha). In Quagga Zebra Mussel Biol. Impacts, Control 331–344 (2013) https://doi.org/10.1201/b15437-28.

  • 36.

    Waite, J. H. Adhesion in byssally attached bivalves. Biol. Rev. 58, 209–231 (1983).

    CAS 

    Google Scholar 

  • 37.

    Lachance, A. A., Myrand, B., Tremblay, R., Koutitonsky, V. & Carrington, E. Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2, 119–129 (2008).

    Google Scholar 

  • 38.

    Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 103, 12999–13003 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Rzepecki, L. M. & Waite, J. H. The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation. Mol. Mar. Biol. Biotechnol. 2, 255–266 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Waite, J. H. & Qin, X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40, 2887–2893 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Zhao, H. & Waite, J. H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281, 26150–26158 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Petrone, L. et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 6, 8737 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Waite, J. H. Mussel adhesion—Essential footwork. J. Exp. Biol. 220, 517–530 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Ou, X. et al. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci. Adv. 6, eabb7620 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N. & Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349, 628–632 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Bilotto, P. et al. Adhesive properties of adsorbed layers of two recombinant mussel foot proteins with different levels of DOPA and tyrosine. Langmuir 35, 15481–15490 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Kim, S. et al. Cation–π interaction in DOPA-deficient mussel adhesive protein mfp-1. J. Mater. Chem. B 3, 738–743 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Can the world change course on climate?

    The global loss of floristic uniqueness