in

Species ethnobotanical values rather than regional species pool determine plant diversity in agroforestry systems

  • 1.

    Swenson, N. G. et al. The biogeography and filtering of woody plant functional diversity in North and South America. Glob. Ecol. Biogeogr. 21, 798–808. https://doi.org/10.1111/j.1466-8238.2011.00727.x (2012).

    Article 

    Google Scholar 

  • 2.

    Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).

    Google Scholar 

  • 3.

    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111(982), 1119–1144 (1977).

    Article 

    Google Scholar 

  • 4.

    Michalet, R. & Pugnaire, F. I. Facilitation in Communities: Underlying Mechanisms, Community and Ecosystem Implications (Wiley Online Library, 2016).

    Google Scholar 

  • 5.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Sci. Am. Nat. 199, 1302–1310 (1978).

    CAS 

    Google Scholar 

  • 6.

    Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242(5396), 344–347 (1973).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Wilkinson, D. M. The disturbing history of intermediate disturbance. Oikos 84, 145–147 (1999).

    Article 

    Google Scholar 

  • 8.

    Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P. & Band, S. R. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J. Ecol. 65, 759–791 (1977).

    Article 

    Google Scholar 

  • 9.

    Huston, M. A. Disturbance, productivity, and species diversity: Empiricism vs. logic in ecological theory. Ecology 95(9), 2382–2396 (2014).

    Article 

    Google Scholar 

  • 10.

    Silvcrtown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611. https://doi.org/10.1016/j.tree.2004.09.003 (2004).

    Article 

    Google Scholar 

  • 11.

    Zobel, M. The relative of species pools in determining plant species richness: An alternative explanation of species coexistence?. Trends Ecol. Evol. 12(7), 266–269. https://doi.org/10.1016/S0169-5347(97)01096-3 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87(6), 1465–1471 (2006).

    Article 

    Google Scholar 

  • 13.

    Kraft, N. J., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322(5901), 580–582. https://doi.org/10.1126/science.1160662 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Swenson, G. & Enquist, B. J. Opposing assembly mechanisms in a neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology 90(8), 2161–2170 (2009).

    Article 

    Google Scholar 

  • 15.

    Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12(7), 693–715 (2009).

    Article 

    Google Scholar 

  • 16.

    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32(6), 429–437. https://doi.org/10.1016/j.tree.2017.03.004 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Cariton, J. T. & Geller, J. B. Ecological roulette: The global transport of nonindigenous marine organisms. Science 261(5117), 78–82. https://doi.org/10.1126/science.261.5117.78 (1993).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Connolly, L. M. T. S. R. Understanding diversity–stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150. https://doi.org/10.1111/ele.12019 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Mccann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Baliddawa, C. W. Plant species diversity and crop pest control. An analytical review. Int. J. Trop. Insect Sci. 6(04), 479–487. https://doi.org/10.1017/s1742758400004306 (1985).

    Article 

    Google Scholar 

  • 21.

    Clara Nicholls, M. A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev 33, 257–274. https://doi.org/10.1007/s13593-012-0092-y (2015).

    Article 

    Google Scholar 

  • 22.

    Haddad, N. M., Crutsinger, G. M., Gross, K., Haarstad, J. & Tilman, D. Plant diversity and the stability of foodwebs. Ecol. Lett. 14, 42–46. https://doi.org/10.1111/j.1461-0248.2010.01548.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Guyot, V., Castagneyrol, B., Vialatte, A. & Deconchat, M. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 12, 1–5 (2016).

    Article 

    Google Scholar 

  • 24.

    Fu, H. et al. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206–217. https://doi.org/10.1016/j.scitotenv.2019.06.092 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    MacDougall, A. S. et al. The Neolithic Plant Invasion Hypothesis: The role of preadaptation and disturbance in grassland invasion. New Phytol. 220(1), 94–103. https://doi.org/10.1111/nph.15285 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Mouquet, N., Munguia, P., Kneitel, J. M. & Miller, T. E. Community assembly time and the relationship between local and regional species richness. Oikos 103(3), 618–626. https://doi.org/10.1034/j.1600-0706.2003.12772.x (2003).

    Article 

    Google Scholar 

  • 27.

    Sferra, C. O., Hart, J. L. & Howeth, J. G. Habitat age influences metacommunity assembly and species richness in successional pond ecosystems. Ecosphere 8(6), e01871 (2017).

    Article 

    Google Scholar 

  • 28.

    Macarthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Int. J. Org. Evol. 17(4), 373–387 (1963).

    Article 

    Google Scholar 

  • 29.

    Simberloff, D. S. Equilibrium theory of island biogeography and ecology. Annu. Rev. Ecol. Syst. 5(1), 161–182. https://doi.org/10.1146/annurev.es.05.110174.001113 (1974).

    Article 

    Google Scholar 

  • 30.

    Vijay, V., & Armsworth, P. R. Pervasive cropland in protected areas highlight trade-offs between conservation and food security. PNAS 118(4), e2010121118 (2021).

  • 31.

    Batisse, M. Action plan for biosphere reserves. Environmental conservation 12(1), 17–27 (1985).

    Article 

    Google Scholar 

  • 32.

    MAB. Criteria for Designation and Evaluation of Unesco Biosphere Reserves in Germany. German National Committee for the UNESCO Programme (2007).

  • 33.

    UNESCO. Biosphere Reserves. The Seville Strategy and the Statutory Framework of the World Network. Paris, France (1995).

  • 34.

    Hadush, M., Holden, S. T. & Tilahun, M. Does population pressure induce farm intensification? Empirical evidence from Tigrai Region, Ethiopia. Agric. Econ. 50(3), 259–277. https://doi.org/10.1111/agec.12482 (2019).

    Article 

    Google Scholar 

  • 35.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292(5515), 281–284. https://doi.org/10.1126/science.1057544 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Holden, E., Linnerud, K., & Banister, D. Sustainable development: Our common future revisited. Global Environmental Change, 26, 130–139 (2014)

    Article 

    Google Scholar 

  • 37.

    M’Woueni, D., Gaoue, O. G., Balagueman, R. O., Biaou, H. S. & Natta, A. K. Road mediated spatio-temporal tree decline in traditional agroforests in an African biosphere reserve. Glob. Ecol. Conserv. 20, e00796. https://doi.org/10.1016/j.gecco.2019.e00796 (2019).

    Article 

    Google Scholar 

  • 38.

    Yaméogo, G., Yélémou, B., & Traoré, D. Pratique et perception paysannes dans la création de parc agroforestier dans le terroir de Vipalogo (Burkina Faso). Base (2005).

  • 39.

    Vodouhè, F. G., Adegbidi, A., Coulibaly, O. & Sinsin, B. Parkia biglobosa (Jacq.) R. Br. Ex Benth. Harvesting as a tool for conservation and source of income for local people in Pendjari Biosphere Reserve. Acta Botanica Gallica 158(4), 595–608 (2011).

    Article 

    Google Scholar 

  • 40.

    Vodouhè, F. G., Coulibaly, O., Biaou, G. & Sinsin, B. Traditional agroforestry systems and biodiversity conservation in Benin (West Africa). Agrofor. Syst. 82(1), 1–13 (2011).

    Article 

    Google Scholar 

  • 41.

    Bee, J. N., Kunstler, G. & Coomes, D. A. Resistance and resilience of New Zealand tree species to browsing. J. Ecol. 95(5), 1014–1026. https://doi.org/10.1111/j.1365-2745.2007.01261.x (2007).

    Article 

    Google Scholar 

  • 42.

    Hoffmann, W. A. The effects of fire and cover on seedling establishment in a neotropical savanna. J. Ecol. https://doi.org/10.2307/2261200 (1996).

    Article 

    Google Scholar 

  • 43.

    Gnangle, P. C. et al. Perceptions locales du changement climatique et mesures d’adaptation dans la gestion des parcs à karité au Nord-Bénin. Int. J. Biol. Chem. Sci. 6(1), 136–149. https://doi.org/10.4314/ijbcs.v6i1.13 (2012).

    Article 

    Google Scholar 

  • 44.

    Ouoba, H. Y., Bastide, B., Coulibaly-Lingani, P., Kabore, S. A. & Boussim, J. I. Connaissances et perceptions des producteurs sur la gestion des parcs à Vitellaria paradoxa CF Gaertn. (Karité) au Burkina Faso. Int. J. Biol. Chem. Sci. 12(6), 2766–2783 (2018).

    Article 

    Google Scholar 

  • 45.

    Alencar, N. L., de Sousa Araújo, T. A., de Amorim, E. L. C. & de Albuquerque, U. P. The inclusion and selection of medicinal plants in traditional pharmacopoeias—Evidence in support of the diversification hypothesis. Econ. Bot. 64(1), 68–79. https://doi.org/10.1007/s12231-009-9104-5 (2010).

    Article 

    Google Scholar 

  • 46.

    Gaoue, O. G. et al.. Theories and major hypotheses in ethnobotany. Economic Botany, 71(3), 269–287 (2017).

    Article 

    Google Scholar 

  • 47.

    Helm, J. et al. Recovery of Mediterranean steppe vegetation after cultivation: Legacy effects on plant composition, soil properties and functional traits. Appl. Veg. Sci. 22(1), 71–84. https://doi.org/10.1111/avsc.12415 (2019).

    Article 

    Google Scholar 

  • 48.

    Nash, K. L., Graham, N. A., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53(3), 646–655. https://doi.org/10.1111/1365-2664.12430 (2016).

    Article 

    Google Scholar 

  • 49.

    Lambin, E. F. et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 11(4), 261–269. https://doi.org/10.1016/S0959-3780(01)00007-3 (2001).

    Article 

    Google Scholar 

  • 50.

    Camou-Guerrero, A., Reyes-García, V., Martínez-Ramos, M. & Casas, A. Knowledge and use value of plant species in a rarámuri community : A gender perspective for conservation. Hum. Ecol. 36(2), 259–272. https://doi.org/10.1007/s10745-007-9152-3 (2008).

    Article 

    Google Scholar 

  • 51.

    de Wet, H., Nkwanyana, M. N. & Vuuren, V. S. F. Medicinal plants used for the treatment of diarrhoea in northern Maputaland, KwaZulu-Natal Province, South Africa. J. Ethnopharmacol. J. 130, 284–289. https://doi.org/10.1016/j.jep.2010.05.004 (2010).

    Article 

    Google Scholar 

  • 52.

    Toledo, V. M., Ortiz-Espejel, B., Cortéz, L., Moguel, P., A., & Ordoñez, M. D. J. The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management. Conserv. Ecol. 7(3), 9. https://www.ecologyandsociety.org/vol7/iss3/art9/ (2003).

  • 53.

    Azihou, F. A. Elephants’ (Loxodonta africana) Impacts on Vegetation Structure and Availability of Plant Species that Other Animals Feed on in the Biosphere Reserve of Pendjari (University of Abomey-Calavi, 2008).

    Google Scholar 

  • 54.

    Faure, P. V. B. Some factors affecting regional differentiation of the soils in the Republic of Benin (West Africa). CATENA 32, 281–306 (1998).

    Article 

    Google Scholar 

  • 55.

    Tiomoko, D. Gestion de la Réserve de Biosphère de la Pendjari : Modes de gestion et proposition d’un modèle conceptuel de durabilité (Universite d’Abomey-Calavi, 2014).

    Google Scholar 

  • 56.

    ASECNA. Données climatiques, station de Natitingou. Bénin (2010).

  • 57.

    PNP. Plan d’Amenagement Participatif et de Gestion du Parc National de la Pendjari, Bénin 2004–2013 (2009).

  • 58.

    Assédé, E. P., Adomou, A. C. & Sinsin, B. Magnoliophyta, biosphere reserve of Pendjari, Atacora province, Benin. Check List 8(4), 642–661 (2012).

    Article 

    Google Scholar 

  • 59.

    Houinato, M. & Sinsin, B. La pression agro-pastorale sur la zone riveraine de la Réserve de la Biosphère de la Pendjari. Tropicultura 18(3), 112–117 (2000).

    Google Scholar 

  • 60.

    Gaoue, O. G. Determinant factors for the integrated management of Pendjari hunting reserve northern Benin (Université d’Abomey Calavi, 2000).

  • 61.

    Adomou, C. A. Vegetation patterns and environmental gradients in Benin: Implications for biogeography and conservation. PhD. Dissertation, Wageningen University. PhD. Dissertation, Wageningen University (2005).

  • 62.

    Inoussa, M. et al. Contrasting population structures of two keystone woodland species of W National Park, Niger. S. Afr. J. Bot. 112, 95–101 (2017).

    Article 

    Google Scholar 

  • 63.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x (1948).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 64.

    R Core Team.R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2015).

  • 65.

    Chao, A. & Lee, S.-M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87(417), 210–217 (1992).

    MathSciNet 
    Article 

    Google Scholar 

  • 66.

    Bernard, H. R. Research Methods in Anthropology: Qualitative and Quantitative Approaches (Rowman & Littlefield, 2017).

    Google Scholar 

  • 67.

    Ceuterick, M., Vandebroek, I., Torry, B. & Pieroni, A. Cross-cultural adaptation in urban ethnobotany: The Colombian folk pharmacopoeia in London. J. Ethnopharmacol. 120(3), 342–359 (2008).

    Article 

    Google Scholar 

  • 68.

    Cohen, N. & Arieli, T. Field research in conflict environments: Methodological challenges and snowball sampling. J. Peace Res. 48(4), 423–435 (2011).

    Article 

    Google Scholar 

  • 69.

    Tongco, M. D. C. Purposive sampling as a tool for informant selection. Ethnobot. Res. Appl. 5, 147–158 (2007).

    Article 

    Google Scholar 

  • 70.

    Phillips, O. & Gentry, A. H. The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ. Bot. 47(1), 15–32 (1993).

    Article 

    Google Scholar 

  • 71.

    Whitney, C. EthnobotanyR: Calculate Quantitative Ethnobotany Indices. Package Version 0.1.8
    https://CRAN.R-project.org/package=ethnobotanyR (2021).

  • 72.

    Oksanen, M. et al. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell. Mol. Life Sci. 76(14), 2739–2760. https://doi.org/10.1007/s00018-019-03111-7 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Canty, A. J. Resampling methods in R: The boot package. R News 2(3): 2–7 (2002).

  • 74.

    Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2), 255–265 (1973).

    MathSciNet 
    Article 

    Google Scholar 

  • 75.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304 (2004).

    MathSciNet 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Can the world change course on climate?

    The global loss of floristic uniqueness