in

Using a climate attribution statistic to inform judgments about changing fisheries sustainability

  • 1.

    Silvy, Y., Guilyardi, E., Sallee, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    ADS 

    Google Scholar 

  • 3.

    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).

    ADS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 4.

    Grothmann, T. & Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Change 15, 199–213 (2005).

    Google Scholar 

  • 5.

    Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).

    Google Scholar 

  • 6.

    Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).

    ADS 

    Google Scholar 

  • 7.

    van Putten, I. E. et al. Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES J. Mar. Sci. 73, 1306–1318 (2016).

    Google Scholar 

  • 8.

    Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. in Advances in Marine Biology (ed. Curry, BE) vol. 74, 1–68 (2016).

  • 9.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Google Scholar 

  • 10.

    Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl. Acad. Sci. U. S. A. 116, 18378–18383 (2019).

    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 11.

    Overland, J. E. et al. Climate controls on marine ecosystems and fish populations. J. Mar. Syst. 79, 305–315 (2010).

    Google Scholar 

  • 12.

    Merryfield, W. J. et al. Current and emerging developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. 101, E869–E896 (2020).

    Google Scholar 

  • 13.

    Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    ADS 

    Google Scholar 

  • 14.

    Palmer, T. N. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl. Acad. Sci. U. S. A. 116, 24390–24395 (2019).

    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 15.

    Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).

    Google Scholar 

  • 16.

    Myers, R. A. When do environment-recruitment correlations work?. Rev. Fish Biol. Fish. 8, 285–305 (1998).

    Google Scholar 

  • 17.

    Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855 (2018).

    Google Scholar 

  • 18.

    Deyle, E. R. et al. Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. U. S. A. 110, 6430–6435 (2013).

    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 19.

    Planque, B. Projecting the future state of marine ecosystems, ‘la grande illusion’?. ICES J. Mar. Sci. 73, 204–208 (2016).

    MathSciNet 

    Google Scholar 

  • 20.

    Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Maguire, K. C., Nieto-Lugilde, D., Fitzpatrick, M. C., Williams, J. W. & Blois, J. L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 46, 343–368 (2015).

    Google Scholar 

  • 22.

    Glaser, S. M. et al. Complex dynamics may limit prediction in marine fisheries. Fish Fish. 15, 616–633 (2014).

    Google Scholar 

  • 23.

    Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Palmer, M. C., Deroba, J. J., Legault, C. M. & Brooks, E. N. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Swain, D. P., Benoit, H. P., Cox, S. P. & Cadigan, N. G. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 26.

    Pershing, A. J. et al. Response to comments on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).

    CAS 

    Google Scholar 

  • 27.

    Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change 7, 23–41 (2016).

    Google Scholar 

  • 29.

    Walsh, J. E. et al. The high latitude heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 99, S39–S43 (2018).

    Google Scholar 

  • 30.

    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP85 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 117, 19656–19657 (2020).

    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 31.

    Dorn, M. W. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-walleye-pollock-stock-gulf-alaska (2020).

  • 32.

    Barbeaux, S. J. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-pacific-cod-stock-gulf-alaska (2020).

  • 33.

    Litzow, M. A. et al. Evaluating ecosystem change as Gulf of Alaska temperature exceeds the limits of preindustrial variability. Prog. Oceanogr. 186, 102393 (2020).

    Google Scholar 

  • 34.

    Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).

    Google Scholar 

  • 35.

    Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020).

    Google Scholar 

  • 36.

    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087 (2020).

    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 37.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    ADS 

    Google Scholar 

  • 38.

    Hsieh, C.-H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650 (2020).

    Google Scholar 

  • 40.

    Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).

    Google Scholar 

  • 41.

    Rogers, L. A., Wilson, M. T., Duffy-Anderson, J. T., Kimmel, D. G. & Lamb, J. F. Pollock and “the Blob”: Impacts of a marine heatwave on walleye pollock early life stages. Fish. Oceanogr. 30, 142–158 (2021).

    Google Scholar 

  • 42.

    Filbee-Dexter, K. et al. Quantifying ecological and social drivers of ecological surprise. J. Appl. Ecol. 55, 2135–2146 (2018).

    Google Scholar 

  • 43.

    Allen, M. Liability for climate change. Nature 421, 891–892 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Lloyd, E. A. & Oreskes, N. Climate change attribution: When is it appropriate to accept new methods?. Earths Future 6, 311–325 (2018).

    ADS 

    Google Scholar 

  • 45.

    Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).

    ADS 

    Google Scholar 

  • 46.

    Frame, D. J. et al. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Change 162, 781–797 (2020).

    ADS 

    Google Scholar 

  • 47.

    Frame, D. J., Wehner, M. F., Noy, I. & Rosier, S. M. The economic costs of Hurricane Harvey attributable to climate change. Clim. Change 160, 271–281 (2020).

    ADS 

    Google Scholar 

  • 48.

    Winkler, A. J. et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).

    ADS 

    Google Scholar 

  • 49.

    Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190013 (2019).

    ADS 

    Google Scholar 

  • 50.

    Litzow, M. A. et al. Quantifying a novel climate through changes in PDO-climate and PDO-salmon relationships. Geophys. Res. Lett. 47, 2020GL087972 (2020).

    ADS 

    Google Scholar 

  • 51.

    Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. 193, 102555 (2021).

    Google Scholar 

  • 52.

    Bailey, K. M. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Mar. Ecol. Prog. Ser. 198, 215–224 (2000).

    ADS 

    Google Scholar 

  • 53.

    Jutfelt, F. Metabolic adaptation to warm water in fish. Funct. Ecol. 34, 1138–1141 (2020).

    Google Scholar 

  • 54.

    Walsh, J. E. et al. Downscaling of climate model output for Alaskan stakeholders. Environ. Model. Softw. 110, 38–51 (2018).

    Google Scholar 

  • 55.

    Lott, F. C. & Stott, P. A. Evaluating simulated fraction of attributable risk using climate observations. J. Clim. 29, 4565–4575 (2016).

    ADS 

    Google Scholar 

  • 56.

    Freeland, H. & Ross, T. `The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014–2018?. Deep-Sea Res. I: Oceanogr. Res. Pap. 150, 103061 (2019).

    Google Scholar 

  • 57.

    Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).

    ADS 

    Google Scholar 

  • 58.

    Adamson, M. W. & Hilker, F. M. Resource-harvester cycles caused by delayed knowledge of the harvested population state can be dampened by harvester forecasting. Theor. Ecol. 13, 425–434 (2020).

    Google Scholar 

  • 59.

    Dorn, M. W. & Zador, S. G. A risk table to address concerns external to stock assessments when developing fisheries harvest recommendations. Ecosyst. Heal. Sustain. 6, 2 (2020).

    Google Scholar 

  • 60.

    Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. Deep-Sea Res. I: Oceanogr Res. Pap. 50, 691–699 (2003).

    ADS 

    Google Scholar 

  • 61.

    Lauffenburger, N., Williams, K. & Jones, D. Results of the acoustic-trawl surveys of walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska, March 2019. https://repository.library.noaa.gov/view/noaa/23711/ (2019).

  • 62.

    Stone, D. A., Rosier, S. M. & Frame, D. J. The question of life, the universe and event attribution. Nat. Clim. Change 11, 276–278 (2021).

    ADS 

    Google Scholar 

  • 63.

    Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552 (2003).

    Google Scholar 

  • 64.

    Holmes, E. E., Ward, E. J. & Wills, K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).

    Google Scholar 

  • 65.

    Yau, K. K. W., Wang, K. & Lee, A. H. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).

    MathSciNet 
    MATH 

    Google Scholar 

  • 66.

    Zuur, A. F., Ieno, N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    MATH 

    Google Scholar 

  • 67.

    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Series B Stat. Methodol. 65, 95–114 (2003).

    MathSciNet 
    MATH 

    Google Scholar 

  • 68.

    Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–29 (2017).

    Google Scholar 

  • 69.

    R Core Team. R: A language and environment for statistical computing. v4.0.2. http://www.r-project.org/ (2020).

  • 70.

    Buerkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Google Scholar 

  • 71.

    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Series Stat. Soc. 182, 389–402 (2019).

    MathSciNet 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Can the world change course on climate?

    The global loss of floristic uniqueness