Silvy, Y., Guilyardi, E., Sallee, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).
Google Scholar
Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).
Google Scholar
Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).
Google Scholar
Grothmann, T. & Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Change 15, 199–213 (2005).
Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).
Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).
Google Scholar
van Putten, I. E. et al. Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES J. Mar. Sci. 73, 1306–1318 (2016).
Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. in Advances in Marine Biology (ed. Curry, BE) vol. 74, 1–68 (2016).
Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl. Acad. Sci. U. S. A. 116, 18378–18383 (2019).
Google Scholar
Overland, J. E. et al. Climate controls on marine ecosystems and fish populations. J. Mar. Syst. 79, 305–315 (2010).
Merryfield, W. J. et al. Current and emerging developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. 101, E869–E896 (2020).
Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).
Google Scholar
Palmer, T. N. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl. Acad. Sci. U. S. A. 116, 24390–24395 (2019).
Google Scholar
Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).
Myers, R. A. When do environment-recruitment correlations work?. Rev. Fish Biol. Fish. 8, 285–305 (1998).
Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855 (2018).
Deyle, E. R. et al. Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. U. S. A. 110, 6430–6435 (2013).
Google Scholar
Planque, B. Projecting the future state of marine ecosystems, ‘la grande illusion’?. ICES J. Mar. Sci. 73, 204–208 (2016).
Google Scholar
Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).
Google Scholar
Maguire, K. C., Nieto-Lugilde, D., Fitzpatrick, M. C., Williams, J. W. & Blois, J. L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 46, 343–368 (2015).
Glaser, S. M. et al. Complex dynamics may limit prediction in marine fisheries. Fish Fish. 15, 616–633 (2014).
Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).
Google Scholar
Palmer, M. C., Deroba, J. J., Legault, C. M. & Brooks, E. N. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).
Google Scholar
Swain, D. P., Benoit, H. P., Cox, S. P. & Cadigan, N. G. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).
Google Scholar
Pershing, A. J. et al. Response to comments on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).
Google Scholar
Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).
Google Scholar
Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change 7, 23–41 (2016).
Walsh, J. E. et al. The high latitude heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 99, S39–S43 (2018).
Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP85 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 117, 19656–19657 (2020).
Google Scholar
Dorn, M. W. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-walleye-pollock-stock-gulf-alaska (2020).
Barbeaux, S. J. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-pacific-cod-stock-gulf-alaska (2020).
Litzow, M. A. et al. Evaluating ecosystem change as Gulf of Alaska temperature exceeds the limits of preindustrial variability. Prog. Oceanogr. 186, 102393 (2020).
Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).
Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020).
Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087 (2020).
Google Scholar
Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).
Google Scholar
Hsieh, C.-H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).
Google Scholar
Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650 (2020).
Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).
Rogers, L. A., Wilson, M. T., Duffy-Anderson, J. T., Kimmel, D. G. & Lamb, J. F. Pollock and “the Blob”: Impacts of a marine heatwave on walleye pollock early life stages. Fish. Oceanogr. 30, 142–158 (2021).
Filbee-Dexter, K. et al. Quantifying ecological and social drivers of ecological surprise. J. Appl. Ecol. 55, 2135–2146 (2018).
Allen, M. Liability for climate change. Nature 421, 891–892 (2003).
Google Scholar
Lloyd, E. A. & Oreskes, N. Climate change attribution: When is it appropriate to accept new methods?. Earths Future 6, 311–325 (2018).
Google Scholar
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).
Google Scholar
Frame, D. J. et al. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Change 162, 781–797 (2020).
Google Scholar
Frame, D. J., Wehner, M. F., Noy, I. & Rosier, S. M. The economic costs of Hurricane Harvey attributable to climate change. Clim. Change 160, 271–281 (2020).
Google Scholar
Winkler, A. J. et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).
Google Scholar
Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190013 (2019).
Google Scholar
Litzow, M. A. et al. Quantifying a novel climate through changes in PDO-climate and PDO-salmon relationships. Geophys. Res. Lett. 47, 2020GL087972 (2020).
Google Scholar
Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. 193, 102555 (2021).
Bailey, K. M. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Mar. Ecol. Prog. Ser. 198, 215–224 (2000).
Google Scholar
Jutfelt, F. Metabolic adaptation to warm water in fish. Funct. Ecol. 34, 1138–1141 (2020).
Walsh, J. E. et al. Downscaling of climate model output for Alaskan stakeholders. Environ. Model. Softw. 110, 38–51 (2018).
Lott, F. C. & Stott, P. A. Evaluating simulated fraction of attributable risk using climate observations. J. Clim. 29, 4565–4575 (2016).
Google Scholar
Freeland, H. & Ross, T. `The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014–2018?. Deep-Sea Res. I: Oceanogr. Res. Pap. 150, 103061 (2019).
Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).
Google Scholar
Adamson, M. W. & Hilker, F. M. Resource-harvester cycles caused by delayed knowledge of the harvested population state can be dampened by harvester forecasting. Theor. Ecol. 13, 425–434 (2020).
Dorn, M. W. & Zador, S. G. A risk table to address concerns external to stock assessments when developing fisheries harvest recommendations. Ecosyst. Heal. Sustain. 6, 2 (2020).
Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. Deep-Sea Res. I: Oceanogr Res. Pap. 50, 691–699 (2003).
Google Scholar
Lauffenburger, N., Williams, K. & Jones, D. Results of the acoustic-trawl surveys of walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska, March 2019. https://repository.library.noaa.gov/view/noaa/23711/ (2019).
Stone, D. A., Rosier, S. M. & Frame, D. J. The question of life, the universe and event attribution. Nat. Clim. Change 11, 276–278 (2021).
Google Scholar
Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552 (2003).
Holmes, E. E., Ward, E. J. & Wills, K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).
Yau, K. K. W., Wang, K. & Lee, A. H. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).
Google Scholar
Zuur, A. F., Ieno, N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
Google Scholar
Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Series B Stat. Methodol. 65, 95–114 (2003).
Google Scholar
Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–29 (2017).
R Core Team. R: A language and environment for statistical computing. v4.0.2. http://www.r-project.org/ (2020).
Buerkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Series Stat. Soc. 182, 389–402 (2019).
Google Scholar
Source: Ecology - nature.com