in

Phytoplankton settling quality has a subtle but significant effect on sediment microeukaryotic and bacterial communities

  • 1.

    Griffiths, J. R. et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23, 2179–2196 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • 2.

    Graf, G., Bengtsson, W., Diesner, U., Schulz, R. & Theede, H. Benthic response to sedimentation of a spring phytoplankton bloom: Process and budget. Mar. Biol. 67, 201–208 (1982).

    Google Scholar 

  • 3.

    Campanyà-llovet, N., Snelgrove, P. V. R. & Parrish, C. C. Rethinking the importance of food quality in marine benthic food webs. Prog. Oceanogr. 156, 240–251 (2017).

    Google Scholar 

  • 4.

    Blomqvist, S. & Heiskanen, A.-S. The challenge of sedimentation in the Baltic Sea. In A Systems Analysis of the Baltic Sea. Ecological Studies (Analysis and Synthesis) Vol. 148 (eds Wulff, F. V. et al.) 211–227 (Springer, Berlin, 2001).

    Google Scholar 

  • 5.

    Elmgren, R. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp. P.-V. Réun. Cons. int. Explor. Mer. 183, 152–169 (1984).

    Google Scholar 

  • 6.

    Kahru, M., Elmgren, R., Di Lorenzo, E. & Savchuk, O. Unexplained interannual oscillations of cyanobacterial blooms in the Baltic Sea. Sci. Rep. 8, 6–10 (2018).

    ADS 

    Google Scholar 

  • 7.

    BACC II Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (SpringerOpen, 2015) https://doi.org/10.1007/978-3-319-16006-1.

  • 8.

    Spilling, K. & Lindström, M. Phytoplankton life cycle transformations lead to species-specific effects on sediment processes in the Baltic Sea. Cont. Shelf Res. 28, 2488–2495 (2008).

    ADS 

    Google Scholar 

  • 9.

    Suikkanen, S. et al. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8, e66475 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Tamelander, T., Spilling, K. & Winder, M. Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections. Ambio 46, 842–851 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments (Springer, 2009).

    Google Scholar 

  • 12.

    Schratzberger, M. & Ingels, J. Meiofauna matters: The roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).

    Google Scholar 

  • 13.

    Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I. & Brüchert, V. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Nascimento, F. J. A., Näslund, J. & Elmgren, R. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr. 57, 338–346 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Nealson, K. H. Sediment bacteria: Who’s there, what are they doing, and what’s new?. Annu. Rev. Earth Planet Sci. 25, 403–434 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Meyer-Reil, L.-A. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl. Environ. Microbiol. 53, 1748–1755 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Ólafsson, E. & Elmgren, R. Seasonal dynamics of sublittoral meiobenthos in relation to phytoplankton sedimentation in the Baltic Sea. Estuar. Coast. Shelf Sci. 45, 149–164 (1997).

    ADS 

    Google Scholar 

  • 18.

    Pfannkuche, O. Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N, 20°W. Deep. Res. Part II 40, 135–149 (1993).

    Google Scholar 

  • 19.

    Hoffmann, K., Hassenrück, C., Salman-Carvalho, V., Holtappels, M. & Bienhold, C. Response of bacterial communities to different detritus compositions in Arctic deep-sea sediments. Front. Microbiol. 8, 266 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Stoeck, T., Kochems, R., Forster, D., Lejzerowicz, F. & Pawlowski, J. Metabarcoding of benthic ciliate communities shows high potential for environmental monitoring in salmon aquaculture. Ecol. Indic. 85, 153–164 (2018).

    Google Scholar 

  • 21.

    Rudnick, D. T. Time lags between the deposition and meiobenthic assimilation of phytodetritus. Mar. Ecol. Prog. Ser. 50, 231–240 (1989).

    ADS 

    Google Scholar 

  • 22.

    van der Heijden, L. H. et al. How do food sources drive meiofauna community structure in soft-bottom coastal food webs?. Mar. Biol. 165, 166 (2018).

    Google Scholar 

  • 23.

    Schratzberger, M., Forster, R. M., Goodsir, F. & Jennings, S. Nematode community dynamics over an annual production cycle in the central North Sea. Mar. Environ. Res. 66, 508–519 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Wieser, W. Die beziehung zwischen mundhöhlengestalt, ernährungsweise und vorkommen bei freilebenden marinen nematoden. Ark Zool 2, 439–484 (1953).

    Google Scholar 

  • 25.

    Moens, T., Van Gansbeke, D. & Vincx, M. Linking estuarine nematodes to their suspected food. A case study from the Westerschelde Estuary (south-west Netherlands). J. Mar. Biol. Assoc. UK 79, 1017–1027 (1999).

    Google Scholar 

  • 26.

    Nascimento, F. J. A., Karlson, A. M. L. & Elmgren, R. Settling blooms of filamentous cyanobacteria as food for meiofauna assemblages. Limnol. Oceanogr. 53, 2636–2643 (2008).

    ADS 

    Google Scholar 

  • 27.

    Nascimento, F. J. A., Karlson, A. M. L., Näslund, J. & Gorokhova, E. Settling cyanobacterial blooms do not improve growth conditions for soft bottom meiofauna. J. Exp. Mar. Biol. Ecol. 368, 138–146 (2009).

    Google Scholar 

  • 28.

    Groendahl, S. & Fink, P. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms. BMC Ecol. 17, 20 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Broman, E. et al. Spring and late summer phytoplankton biomass impact on the coastal sediment microbial community structure. Microb. Ecol. 77, 288–303 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Fagervold, S. K. et al. River organic matter shapes microbial communities in the sediment of the Rhône prodelta. ISME J. 8, 2327–2338 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Reed, H. E. & Martiny, J. B. H. Microbial composition affects the functioning of estuarine sediments. ISME J. 7, 868–879 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Tuominen, L. et al. Nutrient fluxes, porewater profiles and denitrification in sediment influenced by algal sedimentation and bioturbation by Monoporeia affinis. Estuar. Coast. Shelf Sci. 49, 83–97 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Zilius, M., De Wit, R. & Bartoli, M. Response of sedimentary processes to cyanobacteria loading. J. Limnol. 75, 236–247 (2016).

    Google Scholar 

  • 34.

    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 7, 2061–2068 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, e2807 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Soto, E., Quiroga, E., Ganga, B. & Alarcón, G. Influence of organic matter inputs and grain size on soft-bottom macrobenthic biodiversity in the upwelling ecosystem of central Chile. Mar. Biodivers. 47, 433–450 (2017).

    Google Scholar 

  • 37.

    Broman, E., Bonaglia, S., Norkko, A., Creer, S. & Nascimento, F. J. A. High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Mol. Ecol. 00, 1–17 (2020).

    CAS 

    Google Scholar 

  • 38.

    Ingels, J., Tchesunov, A. V. & Vanreusel, A. Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin—How local environmental conditions shape nematode structure and function. PLoS ONE 6, e20094 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Albert, S. et al. Influence of settling organic matter quantity and quality on benthic nitrogen cycling. Limnol. Oceanogr. 66, 1882–1895 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Modig, H. & Ólafsson, E. Responses of Baltic benthic invertebrates to hypoxic events. J. Exp. Mar. Biol. Ecol. 229, 133–148 (1998).

    Google Scholar 

  • 41.

    Ankar, S. Annual dynamics of a Northern Baltic Soft Bottom. In Cyclic Phenomena in Marine Plants and Animals (eds Naylor, E. & Hartnoll, R. G.) 29–36 (Pergamon Press, 1979). https://doi.org/10.1016/b978-0-08-023217-1.50011-4.

    Chapter 

    Google Scholar 

  • 42.

    Karlson, A. M. L., Nascimento, F. J. A. & Elmgren, R. Incorporation and burial of carbon from settling cyanobacterial blooms by deposit-feeding macrofauna. Limnol. Oceanogr. 53, 2754–2758 (2008).

    ADS 

    Google Scholar 

  • 43.

    Hedberg, P., Albert, S., Nascimento, F. J. A. & Winder, M. Effects of changing phytoplankton species composition on carbon and nitrogen uptake in benthic invertebrates. Limnol. Oceanogr. 66, 469–480 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Ólafsson, E., Modig, H. & van de Bund, W. J. Species specific uptake of radio-labelled phytodetritus by benthic meiofauna from the Baltic Sea. Mar. Ecol. Prog. Ser. 177, 63–72 (1999).

    ADS 

    Google Scholar 

  • 45.

    Guden, R. M., Vafeiadou, A., De Meester, N., Derycke, S. & Moens, T. Living apart-together: Microhabitat differentiation of cryptic nematode species in a saltmarsh habitat. PLoS ONE 13, e0204750 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Rudnick, D. T. & Oviatt, C. A. Seasonal lags between organic carbon deposition and mineralization in marine sediments. J. Mar. Res. 44, 815–837 (1986).

    CAS 

    Google Scholar 

  • 47.

    Moens, T. et al. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. J. Sea Res. 92, 125–133 (2014).

    ADS 

    Google Scholar 

  • 48.

    Schuelke, T., Pereira, T. J., Hardy, S. M. & Bik, H. M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol. Ecol. 27, 1930–1951 (2018).

    PubMed 

    Google Scholar 

  • 49.

    Fenchel, T. & Jansson, B.-O. On the vertical distribution of the microfauna in the sediments of a brackish-water beach. Ophelia 3, 161–177 (1966).

    Google Scholar 

  • 50.

    Fenchel, T. The ecology of marine microbenthos II. The food of marine benthic ciliates. Ophelia 5, 73–121 (1968).

    Google Scholar 

  • 51.

    Shimeta, J., Starczak, V. R., Ashiru, O. M. & Zimmer, C. A. Influences of benthic boundary-layer flow on feeding rates of ciliates and flagellates at the sediment-water interface. Limnol. Oceanogr. 46, 1709–1719 (2001).

    ADS 

    Google Scholar 

  • 52.

    Nagata, T. Organic matter–bacteria interactions in seawater. In Microbial Ecology of the Oceans 2nd edn (ed. Kirchman, D. L.) 207–241 (Wiley, 2008).

    Google Scholar 

  • 53.

    De Mesel, I. et al. Top-down impact of bacterivorous nematodes on the bacterial community structure: A microcosm study. Environ. Microbiol. 6, 733–744 (2004).

    PubMed 

    Google Scholar 

  • 54.

    Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. 16, 1668–1681 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Izabel-Shen, D., Albert, S., Winder, M., Farnelid, H. & Nascimento, F. J. A. Quality of phytoplankton deposition structures bacterial communities at the water-sediment interface. Mol. Ecol. 30, 3515–3529 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Bowen, J. L., Babbin, A. R., Kearns, P. J. & Ward, B. B. Connecting the dots: Linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms. Front. Microbiol. 5, 429 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Broman, E. et al. Denitrification responses to increasing cadmium exposure in Baltic Sea sediments. Aquat. Toxicol. 217, 105328 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    van der Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol. Ecol. 30, 3270–3288 (2021).

    PubMed 

    Google Scholar 

  • 59.

    Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).

    PubMed 

    Google Scholar 

  • 60.

    Prokopowich, C. D., Gregory, T. R. & Crease, T. J. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46, 48–50 (2003).

    CAS 

    Google Scholar 

  • 61.

    Nascimento, F. J. A., Lallias, D., Bik, H. M. & Creer, S. Sample size effects on the assessment of eukaryotic diversity and community structure in aquatic sediments using high-throughput sequencing. Sci. Rep. 8, 11737 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Brannock, P. M. & Halanych, K. M. Meiofaunal community analysis by high-throughput sequencing: Comparison of extraction, quality filtering, and clustering methods. Mar. Genomics 23, 67–75 (2015).

    PubMed 

    Google Scholar 

  • 63.

    Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol. Appl. 16, 2143–2152 (2006).

    PubMed 

    Google Scholar 

  • 64.

    Höglander, H., Larsson, U. & Hajdu, S. Vertical distribution and settling of spring phytoplankton in the offshore NW Baltic Sea proper. Mar. Ecol. Prog. Ser. 283, 15–27 (2004).

    ADS 

    Google Scholar 

  • 65.

    Walsby, A. E. Gas vesicles. Annu. Rev. Plant Physiol. 26, 427–439 (1975).

    CAS 

    Google Scholar 

  • 66.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, 36–42 (2013).

    Google Scholar 

  • 68.

    Huson, D. H. et al. MEGAN community edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Google Scholar 

  • 70.

    Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6, 1–14 (2018).

    Google Scholar 

  • 71.

    Urban-Malinga, B., Warzocha, J. & Zalewski, M. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brackish system. J. Sea Res. 80, 25–34 (2013).

    ADS 

    Google Scholar 

  • 72.

    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Oksanen, J. et al. Vegan: Community ecology package. version 2.5-7, 1–298 (2020).

  • 74.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 

  • 75.

    Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2017).

    Google Scholar 

  • 76.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Strategic Forest Reserves can protect biodiversity in the western United States and mitigate climate change

    New visions for better transportation