Frank, S. A. Models of parasite virulence. Q. Rev. Biol. https://doi.org/10.1086/419267 (1996).
Google Scholar
Dobson, A. P. The population dynamics of competition between parasites. Parasitology https://doi.org/10.1017/S0031182000057401 (1985).
Google Scholar
Haelewaters, D. et al. Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. PeerJ https://doi.org/10.7717/peerj.10110 (2020).
Google Scholar
Shapiro-Ilan, D. I., Bruck, D. J. & Lacey, L. A. Principles of Epizootiology and Microbial Control. In Insect Pathology 29–72 (Elsevier, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00003-8.
Renkema, J. M. & Cuthbertson, A. G. S. Impact of multiple natural enemies on immature Drosophila suzukii in strawberries and blueberries. Biocontrol https://doi.org/10.1007/s10526-018-9874-8 (2018).
Google Scholar
Furlong, M. & Pell, J. Interactions between entomopathogenic fungi and other arthropods natural enemies. In Insect-Fungal Associations, Ecology and Evolution (eds Vega, F. & Blackwell, M.) 51–73 (Oxford University Press, 2005).
Lafferty, K. D. Interacting parasites. Science https://doi.org/10.1126/science.1196915 (2010).
Google Scholar
Price, S. L. et al. Recent findings in fungus-growing ants: evolution, ecology, and behavior of a complex microbial symbiosis. In Genes, Behaviors and Evolution of Social Insects (eds Azuma, N. & Higashi, S.) 255–280 (Hokkaido University Press, 2003).
Telfer, S. et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science https://doi.org/10.1126/science.1190333 (2010).
Google Scholar
Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108596 (2020).
Google Scholar
Colwell, R. K., Dunn, R. R. & Harris, N. C. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110411-160304 (2012).
Google Scholar
Gagne, R. B. et al. Parasites as conservation tools. Conserv. Biol. https://doi.org/10.1111/cobi.13719 (2021).
Google Scholar
Csősz, S. & Majoros, G. Ontogenetic origin of mermithogenic Myrmica phenotypes (Hymenoptera, Formicidae). Insectes Soc. https://doi.org/10.1007/s00040-008-1040-3 (2009).
Google Scholar
Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. https://doi.org/10.1038/srep46323 (2017).
Google Scholar
Pearson, B. & Raybould, A. F. The effects of antibiotics on the development of larvae and the possible role of bacterial load in caste determination and diapause in Myrmica rubra (Hymenoptera: Formicidae). Sociobiology 31, 77–90 (1998).
Schmid Hempel, P. Evolutionary Parasitology—The Integrated Study of Infections, Immunology, Ecology, and Genetics (Oxford University Press, 2011).
Donisthorpe, J. K. The Guests of British Ants—Their Habits and Life Histories (George Routledge And Sons, Limited, 1927).
Hölldobler, B. E. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).
Google Scholar
Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
Quevillon, L. E. The Ecology, Epidemiology, and Evolution of Parasites Infecting Ants (Hymenoptera: Formicidae) (Pennsylvania State University, 2018).
Quevillon, L. E. & Hughes, D. P. Pathogens, parasites, and parasitoids of ants: a synthesis of parasite biodiversity and epide-miological traits. BioRxiv https://doi.org/10.1101/384495 (2018).
Google Scholar
Di Salvo, M. et al. The microbiome of the Maculinea-Myrmica host-parasite interaction. Sci. Rep. https://doi.org/10.1038/s41598-019-44514-7 (2019).
Google Scholar
Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. https://doi.org/10.1007/s00040-014-0362-6 (2014).
Google Scholar
Witek, M. et al. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12074 (2013).
Google Scholar
Tartally, A. et al. Patterns of host use by brood parasitic Maculinea butterflies across Europe. Philos. Trans. R Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2018.0202 (2019).
Google Scholar
Wardlaw, J. C., Thomas, J. A. & Elmes, G. W. Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol. Exp. Appl. https://doi.org/10.1046/j.1570-7458.2000.00646.x (2000).
Google Scholar
Thomas, J. A. & Wardlaw, J. C. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia https://doi.org/10.1007/BF00317247 (1992).
Google Scholar
Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. https://doi.org/10.1007/s00040-018-0628-5 (2018).
Google Scholar
Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. https://doi.org/10.1038/s41598-021-93583-0 (2021).
Google Scholar
Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: Changes in host mortality and behavior. Insectes Soc. https://doi.org/10.1007/s00040-014-0349-3 (2014).
Google Scholar
Báthori, F., Rádai, Z. & Tartally, A. The effect of Rickia wasmannii (Ascomycota, Laboulbeniales) on the aggression and boldness of Myrmica scabrinodis (Hymenoptera, Formicidae). J. Hymenopt. Res. https://doi.org/10.3897/jhr.58.13253 (2017).
Google Scholar
Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. https://doi.org/10.1016/j.jip.2015.01.005 (2015).
Google Scholar
Tartally, A. Myrmecophily of Maculinea Butterflies in the Carpathian Basin (Lepidoptera: Lycaenidae), PhD thesis, https://dea.lib.unideb.hu/dea/handle/2437/78921 (University of Debrecen, Hungary, 2008)
Elmes, G. W., Wardlaw, J. C., Schönrogge, K., Thomas, J. A. & Clarke, R. T. Food stress causes differential survival of socially parasitic caterpillars of Maculinea rebeli integrated in colonies of host and non-host Myrmica ant species. Entomol. Exp. Appl. https://doi.org/10.1111/j.0013-8703.2004.00121.x (2004).
Google Scholar
Nash, D. R., Als, T. D. & Boomsma, J. J. Survival and growth of parasitic Maculinea alcon caterpillars (Lepidoptera, Lycaenidae) in laboratory nests of three Myrmica ant species. Insectes Soc. https://doi.org/10.1007/s00040-011-0157-y (2011).
Google Scholar
Wilson, K., Grenfell, B. T. & Shaw, D. J. Analysis of aggregated parasite distributions: a comparison of methods. Funct. Ecol. https://doi.org/10.2307/2390169 (1996).
Google Scholar
Tartally, A., Nash, D. R., Varga, Z. & Lengyel, S. Changes in host ant communities of Alcon Blue butterflies in abandoned mountain hay meadows. Insect Conserv. Divers. https://doi.org/10.1111/icad.12369 (2019).
Google Scholar
Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2017.01.004 (2017).
Google Scholar
Baylis, M. & Pierce, N. E. Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for the loss of nutrients to ants. Physiol. Entomol. https://doi.org/10.1111/j.1365-3032.1992.tb01186.x (1992).
Google Scholar
Elgar, M. A. & Pierce, N. E. Mating success and fecundity in an ant-tended lycaenid butterfly. In Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems 59–75 (Chicago University Press, 1988).
Thomas, J. A., Elmes, G. W. & Wardlaw, J. C. Contest competition among Maculinea rebeli butterfly larvae in ant nests. Ecol. Entomol. https://doi.org/10.1111/j.1365-2311.1993.tb01082.x (1993).
Google Scholar
Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science https://doi.org/10.1126/science.1149180 (2008).
Google Scholar
Schlick-Steiner, B. C. et al. A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften https://doi.org/10.1007/s00114-004-0518-8 (2004).
Google Scholar
Schönrogge, K. et al. Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J. Chem. Ecol. https://doi.org/10.1023/B:JOEC.0000013184.18176.a9 (2004).
Google Scholar
Als, T. D., Nash, D. R. & Boomsma, J. J. Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol. Entomol. https://doi.org/10.1046/j.1365-2311.2002.00427.x (2002).
Google Scholar
Als, T. D., Nash, D. R. & Boomsma, J. J. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim. Behav. https://doi.org/10.1006/anbe.2001.1716 (2001).
Google Scholar
Tartally, A., Somogyi, A. Á., Révész, T. & Nash, D. R. Host ant change of a socially parasitic butterfly (Phengaris alcon) through host nest take-over. Insects https://doi.org/10.3390/insects11090556 (2020).
Google Scholar
Thomas, J. A., Elmes, G. W., Schönrogge, K., Simcox, D. J. & Settele, J. Primary hosts, secondary hosts and ‘non-hosts’: common confusions in the interpretation of host specificity in Maculinea butterflies and other social parasites of ants. In Studies on the Ecology and Conservation of Butterflies in Europe (eds. Settele, J., Kühn, E. & Thomas, J. A.) vol. 2 99–104 (Pensoft, 2005).
Thomas, J. A. et al. Mimetic host shifts in an endangered social parasite of ants. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2012.2336 (2013).
Google Scholar
Fürst, M. A., Durey, M. & Nash, D. R. Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2011.0581 (2012).
Google Scholar
Maák, I. et al. Habitat features and colony characteristics influencing ant personality and its fitness consequences. Behav. Ecol. https://doi.org/10.1093/beheco/araa112 (2021).
Google Scholar
Chapman, B. B., Thain, H., Coughlin, J. & Hughes, W. O. H. Behavioural syndromes at multiple scales in Myrmica ants. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.05.019 (2011).
Google Scholar
Martin, S. J., Helanterä, H. & Drijfhout, F. P. Is parasite pressure a driver of chemical cue diversity in ants? Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.1047 (2011).
Google Scholar
Nehring, V., Evison, S. E. F., Santorelli, L. A., D’Ettorre, P. & Hughes, W. O. H. Kin-informative recognition cues in ants. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.2295 (2011).
Google Scholar
Van Zweden, J. S. et al. Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J. Evol. Biol. https://doi.org/10.1111/j.1420-9101.2010.02020.x (2010).
Google Scholar
Nash, D. R. & Andersen, A. Maculinea-sommerfugle og stikmyrer på danske heder—coevolution i tid og rum. Flora og Fauna 121, 133–141 (2015).
Haelewaters, D., Boer, P., Gort, G. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants (II): variation of infection by Rickia wasmannii over habitats and time. Anim. Biol. https://doi.org/10.1163/15707563-00002472 (2015).
Google Scholar
Dallas, T. A., Laine, A.-L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.1109 (2019).
Google Scholar
Herczeg, D., Ujszegi, J., Kásler, A., Holly, D. & Hettyey, A. Host–multiparasite interactions in amphibians: a review. Parasit. Vectors https://doi.org/10.1186/s13071-021-04796-1 (2021).
Google Scholar
Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. https://doi.org/10.1016/0169-5347(94)90246-1 (1994).
Google Scholar
Zhang, Z., Yan, C. & Zhang, H. Mutualism between antagonists: Its ecological and evolutionary implications. Integr. Zool. https://doi.org/10.1111/1749-4877.12487 (2021).
Google Scholar
Rogalski, M. A., Stewart Merrill, T., Gowler, C. D., Cáceres, C. E. & Duffy, M. A. Context-dependent host-symbiont interactions: Shifts along the parasitism-mutualism continuum. Am. Nat. https://doi.org/10.1086/716635 (2021).
Google Scholar
Pfliegler, W. P., Báthori, F., Haelewaters, D. & Tartally, A. Studies of Laboulbeniales on Myrmica ants (III): myrmecophilous arthropods as alternative hosts of Rickia wasmannii. Parasite https://doi.org/10.1051/parasite/2016060 (2016).
Google Scholar
Chouvenc, T., Efstathion, C. A., Elliott, M. L. & Su, N.-Y. Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften https://doi.org/10.1007/s00114-012-0977-2 (2012).
Google Scholar
Lawton, J. H. & Hassell, M. P. Asymmetrical competition in insects. Nature https://doi.org/10.1038/289793a0 (1981).
Google Scholar
Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication (eds D’Ettorre, P. & Hughes, D. P.) 55–80 (Oxford University Press, 2008).
Google Scholar
Tartally, A., Szűcs, B. & Ebsen, J. R. The first records of Rickia wasmannii Cavara, 1899, a myrmecophilous fungus, and its Myrmica Latreille, 1804 host ants in Hungary and Romania (Ascomycetes: Laboulbeniales; Hymenoptera: Formicidae). Myrmecol. News 10, 123 (2007).
Radchenko, A. G. & Elmes, G. W. Myrmica (Hymenoptera: Formicidae) ants of the Old World. vol. 6 (Fauna Mundi 3, 2010).
Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. News 23, 81–89 (2016).
Haelewaters, D., Boer, P. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants: Rickia wasmannii in the Netherlands. J. Hymenopt. Res. https://doi.org/10.3897/JHR.44.4951 (2015).
Google Scholar
Espadaler, X. & Santamaria, S. Ecto- and endoparasitic fungi on ants from the Holarctic Region. Psyche, 2012, 168478. https://doi.org/10.1155/2012/168478 (2012).
Google Scholar
Báthori, F., Pfliegler, W. P., Zimmerman, C.-U. & Tartally, A. Online image databases as multi-purpose resources: discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. J. Hymenopt. Res, 61, 85-94. https://doi.org/10.3897/jhr.61.20255 (2017).
Google Scholar
Riddick, E. W. Ectoparasitic mite and fungus on an invasive lady beetle: parasite coexistence and influence on host survival. Bull. Insectol. 63, 13–20 (2010).
Konrad, M., Grasse, A. V, Tragust, S. & Cremer, S. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2014.197620141976 (2015).
De Kesel, A., Haelewaters, D. & Dekoninck, W. Myrmecophilous Laboulbeniales Ascomycota in Belgium. Sterbeeckia 34, 3–6 (2016).
Haelewaters, D. The first record of Laboulbeniales (Fungi, Ascomycota) on Ants (Hymenoptera, Formicidae) in The Netherlands. Ascomycete.org 4, 65-69 (2012).
van Swaay, C. et al. European Red List of Butterflies (Publications Office of the European Union, 2010).
Gergely, P. & Hudák, T. Revision of threatened butterfly species in Hungary (Lepidoptera: Rhopalocera). Lepidopterol. Hungarica https://doi.org/10.24386/lephung.2021.17.1.27 (2021).
Google Scholar
Wallis de Vries, M. Code rood voor het gentiaanblauwtje. Vlinders 4, 5–8 (2017).
Barbero, F., Thomas, J. A., Bonelli, S., Balletto, E. & Schönrogge, K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science https://doi.org/10.1126/science.1163583 (2009).
Google Scholar
Thomas, J. A., Elmes, G. W., Wardlaw, J. C. & Woyciechowski, M. Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia https://doi.org/10.1007/BF00378660 (1989).
Google Scholar
Elmes, G. W. et al. The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J. Insect Conserv. https://doi.org/10.1023/A:1009696823965 (1998).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).
Google Scholar
Cammaerts-Tricot, M.-C. Ontogenesis of the defence reactions in the workers of Myrmica rubra L. (Hymenoptera: Formicidae). Anim. Behav. https://doi.org/10.1016/0003-3472(75)90058-5 (1975).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Source: Ecology - nature.com