in

Great tits feed their nestlings with more but smaller prey items and fewer caterpillars in cities than in forests

  • 1.

    Mckinney, M. L. Effects of urbanization on species richness : a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Google Scholar 

  • 2.

    Anderson, P. M. L., Okereke, C., Rudd, A. & Parnell, S. Urbanization, biodiversity and ecosystem services: challenges and opportunities a global assessment (Springer, Berlin, 2013). https://doi.org/10.1007/978-94-007-7088-1.

    Book 

    Google Scholar 

  • 3.

    Newhouse, M. J., Marra, P. P. & Johnson, L. S. Reproductive success of house wrens in suburban and rural landscapes. Wilson J. Ornithol. 120, 99–104 (2008).

    Google Scholar 

  • 4.

    Biard, C. et al. Growing in Cities: An Urban Penalty for Wild Birds? A Study of Phenotypic Differences between Urban and Rural Great Tit Chicks (Parus major). Front. Ecol. Evol. 5, (2017). https://doi.org/10.3389/fevo.2017.00079

  • 5.

    Seress, G. et al. Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. J. Avian Biol. 43, 403–414 (2012).

    Google Scholar 

  • 6.

    Glądalski, M. et al. Differences in the breeding success of Blue Tits Cyanistes caeruleus between a forest and an urban area : a long-term study. Acta Ornithol. 52, 59–68 (2017).

    Google Scholar 

  • 7.

    Teglhøj, P. G. A comparative study of insect abundance and reproductive success of barn swallows Hirundo rustica in two urban habitats. J. Avian Biol. 48, 846–853 (2017).

    Google Scholar 

  • 8.

    Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis (Lond. 1859). 151, 1–18 (2009).

    Google Scholar 

  • 9.

    Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Capilla-Lasheras, P. et al. A global meta-analysis reveals more variable life histories in urban birds compared to their non-urban neighbours. Preprint (2021). https://doi.org/10.1101/2021.09.24.461498.

  • 11.

    Caizergues, A. et al. An avian urban morphotype: how the city environment shapes greattit morphology at different life stages. Urban Ecosyst. 24, 929–941 (2021).

    Google Scholar 

  • 12.

    Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. 14, 69–84 (2021).

    PubMed 

    Google Scholar 

  • 13.

    Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hungaricae 61, 373–408 (2015).

    Google Scholar 

  • 14.

    Bailly, J. et al. From eggs to fledging: negative impact of urban habitat on reproduction in two tit species. J. Ornithol. 157, 377–392 (2016).

    Google Scholar 

  • 15.

    Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156 (2018).

    PubMed 

    Google Scholar 

  • 16.

    Seress, G., Sándor, K., Evans, K. L. & Liker, A. Food availability limits avian reproduction in the city: an experimental study on great tits Parus major. J. Anim. Ecol. 89, 1570–1580 (2020).

    PubMed 

    Google Scholar 

  • 17.

    Krištín, A. & Patočka, J. Birds as predators of Lepidoptera: Selected examples. Biologia (Bratisl). 52, 319–326 (1997).

    Google Scholar 

  • 18.

    Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).

    Google Scholar 

  • 19.

    Ramsay, S. L. & Houston, D. C. Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. Ibis (Lond. 1859). 145, 227–232 (2003).

    Google Scholar 

  • 20.

    Partali, V., Liaaen-Jensen, S., Slagsvold, T. & Lifjeld, J. T. Carotenoids in food chain studies—II. The food chain of Parus SPP. Monitored by carotenoid analysis. Comp. Biochem. Physiol. Part B Comp. Biochem. 87, 885–888 (1987).

    Google Scholar 

  • 21.

    Isaksson, C., Johansson, A. & Andersson, S. Egg yolk carotenoids in relation to habitat and reproductive investment in the great Tit Parus major. Physiol. Biochem. Zool. 81, 112–118 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Isaksson, C., Örnborg, J., Stephensen, E. & Andersson, S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2, 138–146 (2005).

    Google Scholar 

  • 23.

    Arnold, K. E., Ramsay, S. L., Henderson, L. & Larcombe, S. D. Seasonal variation in diet quality: antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Linn. Soc. 99, 708–717 (2010).

    Google Scholar 

  • 24.

    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: a meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).

    Google Scholar 

  • 25.

    Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26, 1196–1211 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • 26.

    Nadolski, J., Marciniak, B., Loga, B., Michalski, M. & Bańbura, J. Long-term variation in the timing and height of annual peak abundance of caterpillars in tree canopies: Some effects on a breeding songbird. Ecol. Indic. 121, 107120 (2021).

    Google Scholar 

  • 27.

    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life?. Glob. Chang. Biol. 24, 1452–1469 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 28.

    Miyashita, T., Shinkai, A. & Chida, T. The effects of forest fragmentation on web spider communities in urban areas. Biol. Conserv. 86, 357–364 (1998).

    Google Scholar 

  • 29.

    Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Ishitani, M., Kotze, D. J. & Niemelä, J. Changes in carabid beetle assemblages across an urban-rural gradient in Japan. Ecography (Cop.) 26, 481–489 (2003).

    Google Scholar 

  • 31.

    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7, 5014 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 193, 377–388 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Isaksson, C. & Andersson, S. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564–572 (2007).

    Google Scholar 

  • 34.

    Sinkovics, C. A fiókatáplálék mennyisége , minősége és szezonalitása városi és erdei széncinege (Parus major) populációkban. (Szent István University, 2014).

  • 35.

    Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond. 1859). 147, 17–24 (2005).

    Google Scholar 

  • 36.

    Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).

    Google Scholar 

  • 37.

    Lease, H. M. & Wolf, B. O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36, 29–38 (2011).

    CAS 

    Google Scholar 

  • 38.

    Riddington, R. & Gosler, A. G. Differences in reproductive success and parental qualities between habitats in the Great Tit Parus major. Ibis (Lond. 1859) 137, 371–378 (1995).

    Google Scholar 

  • 39.

    Mennechez, G. & Clergeau, P. Effect of urbanisation on habitat generalists: starlings not so flexible?. Acta Oecologica 30, 182–191 (2006).

    ADS 

    Google Scholar 

  • 40.

    Shawkey, M. D., Bowman, R. & Woolfenden, G. E. Why is brood reduction in Florida Scrub-Jays higher in suburban than in wildland habitats?. Can. J. Zool. 82, 1427–1435 (2004).

    Google Scholar 

  • 41.

    Robb, G. N., McDonald, R. A., Chamberlain, D. E. & Bearhop, S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484 (2008).

    Google Scholar 

  • 42.

    Sauter, A., Bowman, R., Schoech, S. J. & Pasinelli, G. Does optimal foraging theory explain why suburban Florida scrub-jays (Aphelocoma coerulescens) feed their young human-provided food ?. Behav. Ecol. Sociobiol. 60, 465–474 (2006).

    Google Scholar 

  • 43.

    Heiss, R. S., Clark, A. B. & McGowan, K. J. Growth and nutritional state of American Crow nestlings vary between urban and rural habitats. Ecol. Appl. 19, 829–839 (2009).

    PubMed 

    Google Scholar 

  • 44.

    Graveland, J. & van Gijzen, T. Arthropods and seeds are not sufficient as calcium sources for shell formation and skeletal growth in passerines. Ardea 82, 299–314 (1994).

    Google Scholar 

  • 45.

    Ricklefs, R. In Avian Biology (eds. Farner, D., King, J. & Parkes, K.) 1–83 (Academic Press, 1983).

  • 46.

    Peach, W. J., Vincent, K. E., Fowler, J. A. & Grice, P. V. Reproductive success of house sparrows along an urban gradient. Anim. Conserv. 11, 493–503 (2008).

    Google Scholar 

  • 47.

    Johnston, R. D. Effects of diet quality on the nestling growth of a wild insectivorous passerine, the house martin Delichon urbica. Funct. Ecol. 7, 255–266 (1993).

    Google Scholar 

  • 48.

    Marciniak, B., Nadolski, J., Nowakowska, M., Loga, B. & Bańbura, J. Habitat and annual variation in arthropod abundance affects Blue Tit Cyanistes caeruleus reproduction. Acta Ornithol. 42, 53–62 (2007).

    Google Scholar 

  • 49.

    Pagani-Núñez, E. & Senar, J. C. One hour of sampling is enough: great tit Parus major parents feed their nestlings consistently across time. Acta Ornithol. 48, 194–200 (2013).

    Google Scholar 

  • 50.

    Betts, M. M. The behaviour of a pair of great tits at the nest. Br. Birds 48, 77–82 (1955).

    Google Scholar 

  • 51.

    Van Balen, J. H. A comparative study of the breeding ecology of the great tit Parus major in different habitats. Ardea 61, 1–93 (1973).

    Google Scholar 

  • 52.

    Seress, G. et al. Effects of capture and video-recording on the behavior and breeding success of Great Tits in urban and forest habitats. J. F. Ornithol. 88, 299–312 (2017).

    Google Scholar 

  • 53.

    Free Software Foundation. vlc. (1991).

  • 54.

    Sinkovics, C., Seress, G., Fábián, V., Sándor, K. & Liker, A. Obtaining accurate measurements of the size and volume of insects fed to nestlings from video recordings. J. F. Ornithol. 89, 165–172 (2018).

    Google Scholar 

  • 55.

    R Core Team. R: A language and environment for statistical computing. (2017). Available at: https://www.r-project.org/.

  • 56.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021). R package version 3.1-153, https://CRAN.R-project.org/package=nlme.

  • 57.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2018). R package version 1.3.1. https://CRAN.R-project.org/package=emmeans

  • 58.

    Venables, W. N. & Ripley, B. D. Modern applied statistics with S (Springer, Berlin, 2002).

    MATH 

    Google Scholar 

  • 59.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2011).

    Google Scholar 

  • 60.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 3, 346–363 (2008).

    MathSciNet 
    MATH 

    Google Scholar 

  • 61.

    Ruxton, G. D. & Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 19, 690–693 (2008).

    Google Scholar 

  • 62.

    Bolker, B. M. et al. Generalized linear mixed models :a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    PubMed 

    Google Scholar 

  • 63.

    Vincze, E. et al. Great tits take greater risk toward humans and sparrowhawks in urban habitats than in forests. Ethology 125, 686–701 (2019).

    Google Scholar 

  • 64.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).

    MATH 

    Google Scholar 

  • 65.

    Serrano-Davies, E. & Sanz, J. J. Habitat structure modulates nestling diet composition and fitness of Blue Tits Cyanistes caeruleus in the Mediterranean region. Bird Study 64, 295–305 (2017).

    Google Scholar 

  • 66.

    Senar, J. C., Manzanilla, A. & Mazzoni, D. A comparison of the diet of urban and forest great tits in a Mediterranean habitat. Anim. Biodivers. Conserv. 44(2), 321–327 (2021).

    Google Scholar 

  • 67.

    Narango, D. L., Tallamy, D. W. & Marra, P. P. Nonnative plants reduce population growth of an insectivorous bird. Proc. Natl. Acad. Sci. 115, 201809259 (2018).

    Google Scholar 

  • 68.

    de Satgé, J. et al. Urbanisation lowers great tit Parus major breeding success at multiple spatial scales. J. Avian Biol. 50, (2019). https://doi.org/10.1111/jav.02108

  • 69.

    Baldan, D. & Ouyang, J. Q. Urban resources limit pair coordination over offspring provisioning. Sci. Rep. 10, 15888 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Mennechez, G. & Clergeau, P. In Avian Ecology and Conservation in an Urbanizing World (ed. Marzluff, J. M.) 275–287 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1531-9_13

  • 71.

    Meyrier, E. et al. Happy to breed in the city? Urban food resources limit reproductive output in Western Jackdaws. Ecol. Evol. 7, 1363–1374 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiol. Zool. 70, 631–638 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Warren, M. S. et al. The decline of butterflies in Europe: Problems, significance, and possible solutions. Proc. Natl. Acad. Sci. 118, e2002551117 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Burghardt, K. T., Tallamy, D. W., Philips, C. & Shropshire, K. J. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1, 1–22 (2010).

    Google Scholar 

  • 75.

    Tallamy, D. W. & Shriver, W. G. Are declines in insects and insectivorous birds related?. Condor 123, 1–8 (2021).

    Google Scholar 

  • 76.

    Mackenzie, J. A., Hinsley, S. A. & Harrison, N. M. Parid foraging choices in urban habitat and the consequences for fitness. Ibis (Lond. 1859) 156, 591–605 (2014).

    Google Scholar 

  • 77.

    Narango, D. L., Tallamy, D. W. & Marra, P. P. Native plants improve breeding and foraging habitat for an insectivorous bird. Biol. Conserv. 213, 42–50 (2017).

    Google Scholar 

  • 78.

    Cholewa, M. & Wesołowski, T. Nestling food of European hole-nesting passerines: do we know enough to test the adaptive hypotheses on breeding seasons?. Acta Ornithol. 46, 105–116 (2011).

    Google Scholar 


  • Source: Ecology - nature.com

    The power of economics to explain and shape the world

    Expanding the conversation about sustainability