in

Responses of functional traits in cavity-nesting birds to logging in subtropical and temperate forests of the Americas

  • 1.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Edwards, F. A., Edwards, D. P., Hamer, K. C. & Davies, R. G. Impacts of logging and conversion of rainforest to oil palm on the functional diversity of birds in Sundaland. Ibis 155, 313–326 (2013).

    Google Scholar 

  • 4.

    Bicknell, J. E., Struebig, M. J. & Davies, Z. G. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. J. Appl. Ecol. 52, 379–388 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures: animal species diversity driven by habitat heterogeneity. J. Biogeogr. 31, 79–92 (2004).

    Google Scholar 

  • 6.

    Robles, H. et al. Sylvopastoral management and conservation of the middle spotted woodpecker at the south-western edge of its distribution range. For. Ecol. Manag. 242, 343–352 (2007).

    Google Scholar 

  • 7.

    Aleixo, A. Effects of selective logging on a bird community in the brazilian atlantic forest. Condor 101, 537–548 (1999).

    Google Scholar 

  • 8.

    Robles, H., Ciudad, C. & Matthysen, E. Tree-cavity occurrence, cavity occupation and reproductive performance of secondary cavity-nesting birds in oak forests: the role of traditional management practices. For. Ecol. Manag. 261, 1428–1435 (2011).

    Google Scholar 

  • 9.

    Burivalova, Z. et al. Avian responses to selective logging shaped by species traits and logging practices. Proc. R. Soc. B. 282, 20150164 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Wiebe, K. L. Nest sites as limiting resources for cavity-nesting birds in mature forest ecosystems: a review of the evidence. J. Field Ornithol. 82, 239–248 (2011).

    Google Scholar 

  • 11.

    Politi, N., Hunter, M. & Rivera, L. Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodivers. Conserv. 21, 3131–3155 (2012).

    Google Scholar 

  • 12.

    Bergner, A. et al. Influences of forest type and habitat structure on bird assemblages of oak (Quercus spp.) and pine (Pinus spp.) stands in southwestern Turkey. For. Ecol. Manag. 336, 137–147 (2015).

    Google Scholar 

  • 13.

    van der Hoek, Y., Gaona, G. V. & Martin, K. The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers. Distrib. 23, 1120–1131 (2017).

    Google Scholar 

  • 14.

    Aitken, K. E. H. & Martin, K. The importance of excavators in hole-nesting communities: availability and use of natural tree holes in old mixed forests of western Canada. J. Ornithol. 148, 425–434 (2007).

    Google Scholar 

  • 15.

    Cockle, K. L., Martin, K. & Wesołowski, T. Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front. Ecol. Environ. 9, 377–382 (2011).

    Google Scholar 

  • 16.

    Schaaf, A. A. et al. Tree use, niche breadth and overlap for excavation by woodpeckers in subtropical piedmont forests of Northwestern Argentina. Acta Ornithol. 55 (2020).

  • 17.

    Sekercioglu, C. H. Effects of forestry practices on vegetation structure and bird community of Kibale National Park, Uganda. Biol. Conserv. 12 (2002).

  • 18.

    Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005).

    Google Scholar 

  • 19.

    Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Woltmann, S. Bird community responses to disturbance in a forestry concession in lowland Bolivia. 16.

  • 21.

    Strubbe, D. & Matthysen, E. Experimental evidence for nest-site competition between invasive ring-necked parakeets (Psittacula krameri) and native nuthatches (Sitta europaea). Biol. Conserv. 142, 1588–1594 (2009).

    Google Scholar 

  • 22.

    Rivera, L., Politi, N. & Bucher, E. H. Nesting habitat of the Tucuman Parrot Amazona tucumana in an old-growth cloud-forest of Argentina. Bird Conserv. Int. 22, 398–410 (2012).

    Google Scholar 

  • 23.

    Schaaf, A. A., Tallei, E., Politi, N. & Rivera, L. Cavity-tree use and frequency of response to playback by the Tropical Screech-Owl in northwestern Argentina. NBC 14, 99–107 (2019).

    Google Scholar 

  • 24.

    Schepps, J., Lohr, L. & Martin, T. E. Does tree hardness influence nest-tree selection by primary cavity nesters?. Auk 116, 658–665 (1999).

    Google Scholar 

  • 25.

    Rudolph, D. C., Conner, R. N. & Turner, J. Competition for red-cockaded woodpecker roost and nest cavities: effects of resin age and entrance diameter. Wilson Bull. 102(1), 23–36 (1990).

    Google Scholar 

  • 26.

    Drever, M. C. & Martin, K. Response of woodpeckers to changes in forest health and harvest: implications for conservation of avian biodiversity. For. Ecol. Manag. 259, 958–966 (2010).

    Google Scholar 

  • 27.

    Styring, A. R. & Hussin, M. Z. Effects of logging on woodpeckers in a Malaysian rain forest: the relationship between resource availability and woodpecker abundance. J. Trop. Ecol. 20, 495–504 (2004).

    Google Scholar 

  • 28.

    Ruggera, R. A., Schaaf, A. A., Vivanco, C. G., Politi, N. & Rivera, L. O. Exploring nest webs in more detail to improve forest management. For. Ecol. Manag. 372, 93–100 (2016).

    Google Scholar 

  • 29.

    Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 4467 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Dı́az, S., Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evolut. 16, 646–655 (2001).

  • 31.

    Córdova-Tapia, F. & Zambrano, L. Functional diversity in community ecology. ECOS 24, 78–87 (2015).

    Google Scholar 

  • 32.

    Leaver, J., Mulvaney, J., Ehlers Smith, D. A., Ehlers Smith, Y. C. & Cherry, M. I. Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manag. 445, 82–95 (2019).

  • 33.

    Georgiev, K. B. et al. Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. J. Appl. Ecol. 57, 1103–1112 (2020).

    Google Scholar 

  • 34.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  • 35.

    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity: experimental evolution in variable environments. J. Evolut. Biol. 15, 173–190 (2002).

    Google Scholar 

  • 36.

    Scherer-Lorenzen, M. Biodiversity and ecosystem functioning: basic principles. Struct. Funct. 10 (2005).

  • 37.

    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).

    Google Scholar 

  • 38.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 

    Google Scholar 

  • 39.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 

    Google Scholar 

  • 40.

    Schaaf, A. A. et al. Functional diversity of tree cavities for secondary cavity-nesting birds in logged subtropical Piedmont forests of the Andes. For. Ecol. Manag. 464, 118069 (2020).

    Google Scholar 

  • 41.

    Lindenmayer, D. B., Margules, C. R. & Botkin, D. B. Indicators of biodiversity for ecologically sustainable forest management. Conserv. Biol. 14, 941–950 (2000).

    Google Scholar 

  • 42.

    Gregory, R. D. et al. The generation and use of bird population indicators in Europe. Bird Conserv. Int. 18, S223–S244 (2008).

    Google Scholar 

  • 43.

    Prado, D. E. Seasonally dry forests of tropical South America: from forgottenecosystems to a new phytogeographic unit. Edinb. J. Bot. 57, 437–461 (2000).

    Google Scholar 

  • 44.

    Arias, M. Estadísticas climatológicas de la Provincia de Salta. Dirección de Medio Ambiente y Recursos Naturales, Provincia de Salta, Estación Experimental Agropecuaria Salta, Inta. (1996).

  • 45.

    Brown, A. D. & Malizia, L. R. Las Selvas Pedemontanas de las Yungas. Ciencia hoy 14, 52–63 (2004).

    Google Scholar 

  • 46.

    Politi, N., Hunter, M. Jr. & Rivera, L. Nest selection by cavity-nesting birds in subtropical montane forests of the andes: implications for sustainable forest management. Biotropica 41, 354–360 (2009).

    Google Scholar 

  • 47.

    Politi, N., Hunter, M. & Rivera, L. Availability of cavities for avian cavity nesters in selectively logged subtropical montane forests of the Andes. For. Ecol. Manag. 260, 893–906 (2010).

    Google Scholar 

  • 48.

    Eliano, P. M., Badinier, C. & Malizia, L. R. Manejo forestal sustentable en Yungas: protocolo para el desarrollo de un plan de manejo forestal e implementación en una finca piloto. Ediciones del Subtrópico, San Miguel de Tucumán (2009).

  • 49.

    Ralph, C. J., Droege, S. & Sauer, J. R. Managing and monitoring birds using point counts: standards and applications 1: 3-8 (1995).

  • 50.

    Hill, D. Handbook of biodiversity methods: survey, evaluation and monitoring (Cambridge University Press, 2005).

    Google Scholar 

  • 51.

    Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).

    Google Scholar 

  • 52.

    Schaaf, A. A. et al. Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests. J. For. Res. 31, 1417–1424 (2020).

    Google Scholar 

  • 53.

    Blendinger, P. G. & Álvarez, M. E. Aves de la Selva Pedemontana de las Yungas australes. In: Selva Pedemontana de las Yungas. Historia Natural, Ecología y Manejo de un Ecosistema en Peligro. (Eds AD Brown, A. D et al.) 233–272 (2009).

  • 54.

    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals: Ecol. Arch. Ecol. 95, 2027–2027 (2014).

  • 55.

    del Hoyo, J. A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive. (Lynx Edicions, 2017).

  • 56.

    Schaaf, A. A. et al. Influence of logging on nest density and nesting microsites of cavity-nesting birds in the subtropical forests of the Andes. For. Int. J. For. Res. https://doi.org/10.1093/forestry/cpab032 (2021).

    Article 

    Google Scholar 

  • 57.

    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).

    Google Scholar 

  • 58.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2016).

  • 59.

    Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. http://cran.r-project.org/web/packages/FD (2011).

  • 60.

    Ghadiri Khanaposhtani, M., Kaboli, M., Karami, M., Etemad, V. & Baniasadi, S. Effects of logged and unlogged forest patches on avifaunal diversity. Environ. Manag. 51, 750–758 (2013).

  • 61.

    Tilman, D. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    CAS 

    Google Scholar 

  • 62.

    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules: functional diversity measures. Funct. Ecol. 24, 867–876 (2010).

    Google Scholar 

  • 63.

    Mackey, B. et al. Policy options for the world’s primary forests in multilateral environmental agreements. Conserv. Lett. 8, 139–147 (2015).

    Google Scholar 

  • 64.

    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    PubMed 

    Google Scholar 

  • 65.

    Azeria, E. T. et al. Differential response of bird functional traits to post-fire salvage logging in a boreal forest ecosystem. Acta Oecol. 37, 220–229 (2011).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Phenological mismatches between above- and belowground plant responses to climate warming

    Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin