in

Accelerated mass extinction in an isolated biota during Late Devonian climate changes

  • 1.

    Finnegan, S., Rasmussen, C. M. Ø. & Harper, D. A. T. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proc. Biol. Sci. 283, 1–9 (2016).

    Google Scholar 

  • 2.

    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 3.

    De Vleeschouwer, D. et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth Planet. Sci. Lett. 365, 25–37 (2013).

    ADS 

    Google Scholar 

  • 4.

    De Vleeschouwer, D. et al. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Commun. 8, 1–11 (2017).

    Google Scholar 

  • 5.

    Saupe, E. E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020).

    ADS 

    Google Scholar 

  • 6.

    Finnegan, S. et al. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 567–570 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Carmichael, S. K., Waters, J. A., Suttner, T. J. & Kido, E. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: a review of its sedimentological and geochemical expression. Glob. Planet. Change 183, 102984 (2019).

    Google Scholar 

  • 8.

    Lash, G. G. A multiproxy analysis of the Frasnian–Famennian transition in western New York State, U.S.A.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 473, 108–122 (2017).

    Google Scholar 

  • 9.

    Haddad, E. E. et al. Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 178–190 (2018).

    Google Scholar 

  • 10.

    Joachimski, M. M. & Buggisch, W. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30, 711–714 (2002).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Joachimski, M. M. & Buggisch, W. Anoxic events in the Late Frasnian—Causes of the Frasnian–Famennian faunal crisis?. Geology 21, 675–678 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    McGhee, G. R. & Racki, G. Extinction: Late Devonian mass extinction. eLS 2, 1–12 (2021).

    Google Scholar 

  • 13.

    Racki, G. Toward understanding Late Devonian global events: few answers, many questions in Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach (eds. Over, D. J., Morrow, J. R. & Wignall, P. B.), 5–36 (Elsevier, 2005).

  • 14.

    Hartenfels, S., Becker, R. T. & Aboussalam, Z. S. Givetian to Famennian stratigraphy, Kellwasser, Annulata and other events at Beringhauser Tunnel (Messinghausen Anticline, eastern Rhenish Massif). Münster. Forsch. Geol. Paläont. 108, 196–219 (2016).

    Google Scholar 

  • 15.

    Le Houedec, S., Girard, C. & Balter, V. Conodont Sr/Ca and δ18O record seawater changes at the Frasnian–Famennian boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 376, 114–121 (2013).

    Google Scholar 

  • 16.

    McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289–297 (2004).

    Google Scholar 

  • 17.

    Stigall, A. L. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22, 4–9 (2012).

    Google Scholar 

  • 18.

    Beard, J. A., Bush, A. M., Fernandes, A. M., Getty, P. R. & Hren, M. T. Stratigraphy and paleoenvironmental analysis of the Frasnian–Famennian (Upper Devonian) boundary interval in Tioga, north-central Pennsylvania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 67–79 (2017).

    Google Scholar 

  • 19.

    Bush, A. M., Csonka, J. D., DiRenzo, G. V., Over, D. J. & Beard, J. A. Revised correlation of the Frasnian–Famennian boundary and Kellwasser Events (Upper Devonian) in shallow marine paleoenvironments of New York State. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 233–246 (2015).

    Google Scholar 

  • 20.

    Day, J. Stratigraphy, Biostratigraphy, and Depositional History of the Givetian and Frasnian Strata in the San Andres and Sacramento Mountains of Southern New Mexico (University of Iowa, Iowa City, 1988).

    Google Scholar 

  • 21.

    Stanley, S. M. Thermal barriers and the fate of perched faunas. Geology 38, 31–34 (2010).

    ADS 

    Google Scholar 

  • 22.

    Copper, P. Frasnian/Famennian mass extinction and cold-water oceans. Geology 14, 835–839 (1986).

    ADS 

    Google Scholar 

  • 23.

    Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).

    Google Scholar 

  • 24.

    Copper, P. Evaluating the Frasnian–Famennian mass extinction: comparing brachiopod faunas. Acta Palaeontol. Pol. 43, 137–154 (1998).

    Google Scholar 

  • 25.

    Becker, R. T. & House, M. R. Kellwasser Events and goniatite successions in the Devonian of the Montagne Noire with comments on possible causations. Cour Forsch Senck 169, 45–77 (1994).

    Google Scholar 

  • 26.

    Bond, D., Wignall, P. B. & Racki, G. Extent and duration of marine anoxia during Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria, and France. Geol. Mag. 2, 173–193 (2004).

    ADS 

    Google Scholar 

  • 27.

    Buggisch, W. The global Frasnian–Famennian »Kellwasser Event«. Geol. Rundschau 80, 49–72 (1991).

    ADS 

    Google Scholar 

  • 28.

    Johnson, J. G., Klapper, G. & Sandberg, C. A. Devonian eustatic fluctuations in Euramerica. Geol. Soc. Am. Bull. 96, 567–587 (1985).

    ADS 

    Google Scholar 

  • 29.

    Mcghee, G. R. The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology 14, 250–257 (1988).

    Google Scholar 

  • 30.

    Sandberg, C. A., Morrow, J. R. & Ziegler, W. Late Devonian sea-level changes, catastrophic events, and mass extinctions. Geol. Soc. Am. Spec. Pap. 356, 473–487 (2002).

    Google Scholar 

  • 31.

    Mehta, C. R. & Patel, N. R. Exact logistic regression: theory and examples. Stat. Med. 14, 2143–2160 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Over, J. D. Conodont biostratigraphy of the Java Formation (Upper Devonian) and the Frasnian–Famennian boundary in western New York State. Geol. Soc. Am. Spec. Pap. 321, 161–177 (1997).

    Google Scholar 

  • 33.

    Boyer, D. L. et al. Living on the edge: the impact of protracted oxygen stress on life in the Late Devonian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 566, 1–16 (2021).

    Google Scholar 

  • 34.

    Bush, A. M. & Brame, R. I. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 26, 573–591 (2010).

    Google Scholar 

  • 35.

    Fasham, M. J. R. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology 58, 551–561 (1977).

    Google Scholar 

  • 36.

    Legendre, P. & Legendre, L. Numerical ecology (Elsevier, Amsterdam, 2012).

    MATH 

    Google Scholar 

  • 37.

    Holland, S. M. The stratigraphy of mass extinctions and recoveries. Annu. Rev. Earth Planet. Sci. https://doi.org/10.1146/annurev-earth-071719-054827 (2020).

    Article 

    Google Scholar 

  • 38.

    Kelly, A. A., Cohen, P. A. & Boyer, D. L. Tiny keys to unlocking the Kellwasser events: detailed characterization of organic walled microfossils associated with extinction in western New York State. Palaios 34, 96–104 (2019).

    ADS 

    Google Scholar 

  • 39.

    Boyer, D. L. & Droser, M. L. Palaeoecological patterns within the dysaerobic biofacies: examples from Devonian black shales of New York state. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 206–216 (2009).

    Google Scholar 

  • 40.

    Day, J. & Witzke, B. J. Upper Devonian biostratigraphy, Event Stratigraphy, and Late Frasnian Kellwasser Extinction bioevents in the Iowa Basin: western Euramerica. In Stratigraphy & Timescales. 2, 243–332 (Elsevier, 2017).

  • 41.

    Day, J. & Copper, P. Revision of latest Givetian-Frasnian Atrypida (Brachiopoda) from central North America. Acta Palaeontol. Pol. 43, 155–204 (1998).

    Google Scholar 

  • 42.

    Day, J. Subtropical record of Upper Devonian (late Frasnian-early Famennian) sea level events and Kellwasser Extinction bioevents, southern Ouachita margin-western Laurussia (Arizona-New Mexico, central and northern Mexico) in Geological Society of America Abstracts with Programs Vol. 42, 89 (2010).

  • 43.

    Schindler, E. The late Frasnian (Upper Devonian) Kellwasser crisis. Lect. Notes Earth Sci. 30, 151–160 (1990).

    Google Scholar 

  • 44.

    Schindler, E. Event-stratigraphic markers within the Kellwasser crisis near the Frasnian/Famennian boundary (Upper Devonian) in Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 104, 115–125 (1993).

    Google Scholar 

  • 45.

    Zapalski, M. et al. The palaeobiodiversity of stromatoporoids, tabulates and brachiopods in the Devonian of Ardennes-Changes through time. Bulletin de la Société Géologique de France. 178(5), 383–390. https://doi.org/10.2113/gssgfbull.178.5.383 (2007).

    Article 

    Google Scholar 

  • 46.

    Ma, X. P., Sun, Y. L., Hao, W. C. & Liao, W. H. Rugose corals and brachiopods across the Frasnian–Famennian boundary in central Hunan, South China. Acta Palaeontol. Pol. 47, 373–396 (2002).

    Google Scholar 

  • 47.

    Racki, G., Makowski, I., Miklas, J. & Gawlik, S. Brachiopod biofacies in the Frasnian reef-complexes: an example from the Holy Cross Mts, Poland. Geologia 12(13), 64–109 (1993).

    Google Scholar 

  • 48.

    Sokiran, E. V. Frasnian–Famennian extinction and recovery of rhynchonellid brachiopods from the East European Platform. Acta Palaeontol. Pol. 47, 339–354 (2002).

    Google Scholar 

  • 49.

    Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & Mclaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios https://doi.org/10.2110/palo.2005.p05-028r (2007).

    Article 

    Google Scholar 

  • 50.

    Rode, A. L. & Lieberman, B. S. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 345–359 (2004).

    Google Scholar 

  • 51.

    Hall, J. Palaeontology: containing descriptions and figures of the fossil Brachiopoda of the upper Helderberg, Hamilton, Portage and Chemung Groups. Geological Survey of New York IV (1867).

  • 52.

    Cooper, G. A. & Dutro, J. T. Devonian brachiopods of New Mexico. Bull. Am. Paleontol. 82, 1–215 (1982).

    Google Scholar 

  • 53.

    Linsley, D. M. Devonian paleontology of New York. Paleontol. Res. Inst. Spec. Publ. 21, 472 (1994).

    Google Scholar 

  • 54.

    R: A Language and Environment for Statistical Computing. (2021).

  • 55.

    Holland, S. M., Miller, A. I., Meyer, D. L. & Dattilo, B. F. The detection and importance of subtle biofacies within a single lithofacies: the Upper Ordovician Kope Formation of the Cincinnati, Ohio region. Palaios 16, 205–217 (2001).

    ADS 

    Google Scholar 

  • 56.

    The Paleobiology Database. (2018). Available at: http://www.paleobiodb.org/.

  • 57.

    Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    MathSciNet 
    MATH 

    Google Scholar 

  • 58.

    Finney, D. J. The Fisher-Yates test of significance in 2 × 2 contingency tables. Biometrika 35, 156 (1948).

    MathSciNet 
    MATH 

    Google Scholar 

  • 59.

    Scott, C. & Lyons, T. W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem. Geol. 324–325, 19–27 (2012).

    ADS 

    Google Scholar 

  • 60.

    Boyer, D. L., Owens, J. D., Lyons, T. W. & Droser, M. L. Joining forces: combined biological and geochemical proxies reveal a complex but refined high-resolution palaeo-oxygen history in Devonian epeiric seas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306, 134–146 (2011).

    Google Scholar 

  • 61.

    Boyer, D. L., Haddad, E. E. & Seeger, E. S. The last gasp: trace fossils track deoxygenation leading into the Frasnian–Famennian extinction event. Palaios 29, 646–651 (2014).

    ADS 

    Google Scholar 

  • 62.

    Rickard, L. V. & Fisher, D. W. Geologic map of New York: Finger Lakes sheet and Niagara sheet. (1970).

  • 63.

    Woodrow, D. L. Stratigraphy, structure, and sedimentary patterns in the Upper Devonian of Bradford County, Pennsylvania. Pennsylvania Geological Survey 1–78 (1968).


  • Source: Ecology - nature.com

    Phenological mismatches between above- and belowground plant responses to climate warming

    Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin