Priyadarshani, N., Marsland, S. & Castro, I. Automated birdsong recognition in complex acoustic environments: A review. J. Avian Biol. 49, e01447. https://doi.org/10.1111/jav.01447 (2018).
Google Scholar
Barker, D. J. & Johnson, A. M. Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis. J. Acoust. Soc. Am. 141, EL281–EL286. https://doi.org/10.1121/1.4977990 (2017).
Google Scholar
Oswald, J. N., Rankin, S., Barlow, J. & Lammers, M. O. A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am. 122, 587–595. https://doi.org/10.1121/1.2743157 (2007).
Google Scholar
Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET—Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465-485.e465. https://doi.org/10.1016/j.neuron.2017.04.005 (2017).
Google Scholar
Binder, M. S., Hernandez-Zegada, C. J., Potter, C. T., Nolan, S. O. & Lugo, J. N. A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research. J. Neurosci. Methods 309, 6–12. https://doi.org/10.1016/j.jneumeth.2018.08.015 (2018).
Google Scholar
Mcloughlin, M. P., Stewart, R. & McElligott, A. G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface 16, 20190225. https://doi.org/10.1098/rsif.2019.0225 (2019).
Google Scholar
Castellote, M. & Fossa, F. Measuring acoustic activity as a method to evaluate welfare in captive beluga whales (Delphinapterus leucas). Aquat. Mamm. 32, 325–333. https://doi.org/10.1578/AM.32.3.2006.325 (2006).
Google Scholar
Clapham, W. M., Fedders, J. M., Beeman, K. & Neel, J. P. S. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Comput. Electron. Agric. 76, 96–104. https://doi.org/10.1016/j.compag.2011.01.009 (2011).
Google Scholar
Schön, P. C. et al. Altered vocalization rate during the estrous cycle in dairy cattle. J. Dairy Sci. 90, 202–206. https://doi.org/10.3168/jds.S0022-0302(07)72621-8 (2007).
Google Scholar
Cascão, I., Lammers, M. O., Prieto, R., Santos, R. S. & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Sci. Rep. 10, 3610. https://doi.org/10.1038/s41598-020-60441-4 (2020).
Google Scholar
Manteuffel, G. R. & Schön, P. C. STREMODO, an innovative technique for continuous stress assessment of pigs in housing and transport. Arch. Tierzucht. 47, 173–181 (2004).
Chedad, A. et al. Recognition system for pig cough based on probabilistic neural networks. J. Agric. Eng. Res. 79, 449–457. https://doi.org/10.1006/jaer.2001.0719 (2001).
Google Scholar
Bardeli, R. et al. Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn. Lett. 31, 1524–1534. https://doi.org/10.1016/j.patrec.2009.09.014 (2010).
Google Scholar
Jones, K. E. et al. In Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action (eds Collen, B., et al.) Ch. 10, (Taylor & Francis, 2013).
Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309. https://doi.org/10.1111/brv.12001 (2013).
Google Scholar
Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48. https://doi.org/10.1111/2041-210x.12291 (2015).
Google Scholar
Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301. https://doi.org/10.1111/2041-210x.12730 (2017).
Google Scholar
Haver, S. M. et al. Comparing the underwater soundscapes of four U.S. national parks and marine sanctuaries. Front. Mar. Sci. 6, 500. https://doi.org/10.3389/fmars.2019.00500 (2019).
Google Scholar
Beason, R. D., Riesch, R. & Koricheva, J. AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics 28, 381–396. https://doi.org/10.1080/09524622.2018.1463293 (2019).
Google Scholar
Beeman, K. H., Hopp, S. L., Owren, M. J. & Evans, C. S. E. Animal Acoustic Communication: Sound Analysis and Research Methods (Springer, 1998).
Janik, V. M. Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143. https://doi.org/10.1006/anbe.1998.0923 (1999).
Google Scholar
Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547. https://doi.org/10.1121/1.4808713 (2009).
Google Scholar
Kaleidoscope Pro Analysis Software [Software]. (Wildlife Acoustics, Inc. https://www.wildlifeacoustics.com (2020).
Ruff, Z. J., Lesmeister, D. B., Duchac, L. S., Padmaraju, B. K. & Sullivan, C. M. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 6, 79–92. https://doi.org/10.1002/rse2.125 (2020).
Google Scholar
Coffey, K. R., Marx, R. G. & Neumaier, J. F. DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44, 859–868. https://doi.org/10.1038/s41386-018-0303-6 (2019).
Google Scholar
Oikarinen, T. et al. Deep convolutional network for animal sound classification and source attribution using dual audio recordings. J. Acoust. Soc. Am. 145, 654–662. https://doi.org/10.1121/1.5087827 (2019).
Google Scholar
Pozzi, L., Gamba, M. & Giacoma, C. The use of artificial neural networks to classify primate vocalizations: A pilot study on black lemurs. Am. J. Primatol. 72, 337–348. https://doi.org/10.1002/ajp.20786 (2010).
Google Scholar
Gamba, M. et al. Comparative analysis of the vocal repertoire of Eulemur: A dynamic time warping approach. Int. J. Primatol. 36, 894–910. https://doi.org/10.1007/s10764-015-9861-1 (2015).
Google Scholar
Pozzi, L., Gamba, M. & Giacoma, C. In Leaping Ahead: Advances in Prosimian Biology. (ed Masters, J.) Ch. 34, 305–313 (Springer, 2013).
Heinicke, S. et al. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 6, 753–763. https://doi.org/10.1111/2041-210x.12384 (2015).
Google Scholar
Turesson, H. K., Ribeiro, S., Pereira, D. R., Papa, J. P. & de Albuquerque, V. H. C. Machine learning algorithms for automatic classification of marmoset vocalizations. PLoS One 11, e0163041. https://doi.org/10.1371/journal.pone.0163041 (2016).
Google Scholar
Bergler, C. et al. ORCA-SPOT: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997. https://doi.org/10.1038/s41598-019-47335-w (2019).
Google Scholar
Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607. https://doi.org/10.1038/s41598-020-57549-y (2020).
Google Scholar
Zeppelzauer, M., Hensman, S. & Stoeger, A. S. Towards an automated acoustic detection system for free-ranging elephants. Bioacoustics 24, 13–29. https://doi.org/10.1080/09524622.2014.906321 (2015).
Google Scholar
Venter, P. J. & Hanekom, J. J. Automatic detection of African elephant (Loxodonta africana) infrasonic vocalisations from recordings. Biosyst. Eng. 106, 286–294. https://doi.org/10.1016/j.biosystemseng.2010.04.001 (2010).
Google Scholar
Mac Aodha, O. et al. Bat detective-Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14, e1005995. https://doi.org/10.1371/journal.pcbi.1005995 (2018).
Google Scholar
Henriquez, A. et al. An automatic acoustic bat identification system based on the audible spectrum. Expert Syst. Appl. 41, 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021 (2014).
Google Scholar
Hoy, M. B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 37, 81–88. https://doi.org/10.1080/02763869.2018.1404391 (2018).
Google Scholar
López, G., Quesada, L. & Guerrero, L. A. In Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing Vol. 592 (ed. Nunes, I.) (Springer, 2018).
Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 (2017).
Google Scholar
Barker, D. J., Herrera, C. & West, M. O. Automated detection of 50-kHz ultrasonic vocalizations using template matching in XBAT. J. Neurosci. Methods 236, 68–75. https://doi.org/10.1016/j.jneumeth.2014.08.007 (2014).
Google Scholar
Zimmermann, E. In Leaping Ahead: Advances in Prosimian Biology (eds. Masters, J., Gamba, M., & Génin, F.) Ch. 32, 287–295 (Springer, 2013).
Schopf, C., Schmidt, S. & Zimmermann, E. Moderate evidence for a Lombard effect in a phylogenetically basal primate. PeerJ 4, e2328. https://doi.org/10.7717/peerj.2328 (2016).
Google Scholar
Niaussat, M. M. & Petter, J. J. Etude de la sensibilité auditive d’un lémurien malgache: Microcebus murinus (J.-F. Miller, 1777). Mammalia 44, 553–558. https://doi.org/10.1515/mamm.1980.44.4.553 (1980).
Google Scholar
Hasiniaina, A. F. et al. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (Microcebus spp.). Ecol. Evol. 10, 3784–3797. https://doi.org/10.1002/ece3.6177 (2020).
Google Scholar
Braune, P., Schmidt, S. & Zimmermann, E. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.). BMC Biol. 6, 19. https://doi.org/10.1186/1741-7007-6-19 (2008).
Google Scholar
Leliveld, L. M. C., Scheumann, M. & Zimmermann, E. Acoustic correlates of individuality in the vocal repertoire of a nocturnal primate (Microcebus murinus). J. Acoust. Soc. Am. 129, 2278–2288. https://doi.org/10.1121/1.3559680 (2011).
Google Scholar
Scheumann, M., Zimmermann, E. & Deichsel, G. Context-specific calls signal infants’ needs in a strepsirrhine primate, the gray mouse lemur (Microcebus murinus). Dev. Psychobiol. 49, 708–718. https://doi.org/10.1002/dev.20234 (2007).
Google Scholar
Zimmermann, E. In Handbook of Mammalian Vocalization: An Integrative Neuroscience Approach. (ed. Brudzynski, S. M.) 215–225 (Academic Press, 2010).
Zimmermann, E. In Handbook of Ultrasonic Vocalization: A Window into the Emotional Brain vol. 25 (ed. Brudzynski, S. M.) 521–533 (Academic Press, 2018).
Buesching, C. D., Heistermann, M., Hodges, J. K. & Zimmermann, E. Multimodal oestrus advertisement in a small nocturnal prosimian, Microcebus murinus. Folia Primatol. 69(1), 295–308. https://doi.org/10.1159/000052718 (1998).
Google Scholar
Scheumann, M., Linn, S. & Zimmermann, E. Vocal greeting during mother–infant reunions in a nocturnal primate, the gray mouse lemur (Microcebus murinus). Sci. Rep. 7, 10321. https://doi.org/10.1038/s41598-017-10417-8 (2017).
Google Scholar
Braune, P., Schmidt, S. & Zimmermann, E. Spacing and group coordination in a nocturnal primate, the golden brown mouse lemur (Microcebus ravelobensis): The role of olfactory and acoustic signals. Behav. Ecol. Sociobiol. 58, 587–596. https://doi.org/10.1007/s00265-005-0944-4 (2005).
Google Scholar
Kessler, S. E., Scheumann, M., Nash, L. T. & Zimmermann, E. Paternal kin recognition in the high frequency/ultrasonic range in a solitary foraging mammal. BMC Ecol. 12, 26. https://doi.org/10.1186/1472-6785-12-26 (2012).
Google Scholar
Zimmermann, E. & Hafen, T. G. Colony specificity in a social call of mouse lemurs (Microcebus ssp.). Am. J. Primatol. 54, 129–141. https://doi.org/10.1002/ajp.1018 (2001).
Google Scholar
Hafen, T., Neveu, H., Rumpler, Y., Wilden, I. & Zimmermann, E. Acoustically dimorphic advertisement calls separate morphologically and genetically homogenous populations of the grey mouse lemur (Microcebus murinus). Folia Primatol. 69, 342–356. https://doi.org/10.1159/000052723 (1998).
Google Scholar
Zimmermann, E. & Lerch, C. The complex acoustic design of an advertisement call in male mouse lemurs (Microcebus murinus, Prosimii, Primates) and sources of its variation. Ethology 93, 211–224. https://doi.org/10.1111/j.1439-0310.1993.tb00990.x (1993).
Google Scholar
Zimmermann, E. Castration affects the emission of an ultrasonic vocalization in a nocturnal primate, the grey mouse lemur (Microcebus murinus). Physiol. Behav. 60, 693–697. https://doi.org/10.1016/0031-9384(96)81674-X (1996).
Google Scholar
Keenan, S., Lemasson, A. & Zuberbühler, K. Graded or discrete? A quantitative analysis of Campbell’s monkey alarm calls. Anim. Behav. 85, 109–118. https://doi.org/10.1016/j.anbehav.2012.10.014 (2013).
Google Scholar
Tallet, C. et al. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS One 8, e71841. https://doi.org/10.1371/journal.pone.0071841 (2013).
Google Scholar
Hasiniaina, A. F. et al. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire’s mouse lemur (Microcebus mamiratra). Am. J. Primatol. https://doi.org/10.1002/ajp.22866 (2018).
Google Scholar
Boersma, P. Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001).
Owren, M. J. GSU Praat Tools: Scripts for modifying and analyzing sounds using Praat acoustics software. Behav. Res. Methods 40, 822–829. https://doi.org/10.3758/Brm.40.3.822 (2008).
Google Scholar
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Fränti, P. & Sieranoja, S. How much can k-means be improved by using better initialization and repeats?. Pattern Recogn. 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014 (2019).
Google Scholar
Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach. (O’Reilly Media, Inc., 2017).
Field, A. Discovering Statistics Using IBM SPSS Statistics (Englisch). 3rd ed. (Sage Publication, 2009).
Clink, D. J., Tasirin, J. S. & Klinck, H. Vocal individuality and rhythm in male and female duet contributions of a nonhuman primate. Curr. Zool. 66, 173–186. https://doi.org/10.1093/cz/zoz035 (2019).
Google Scholar
Romero-Mujalli, D., Tárano, Z., Cobarrubia, S. & Barreto, G. Caracterización de silbidos de Tursiops truncatus (Cetacea: Delphinidae) y su asociación con el comportamiento en superficie. Revista Argentina de Ciencias del Comportamiento 6, 15–29. https://doi.org/10.32348/1852.4206.v6.n1.6362 (2014).
Google Scholar
Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS One 10, e0121711. https://doi.org/10.1371/journal.pone.0121711 (2015).
Google Scholar
García, N. C., Barreira, A. S., Kopuchian, C. & Tubaro, P. L. Intraspecific and interspecific vocal variation in three Neotropical cardinalids (Passeriformes: Fringillidae) and its relationship with body mass. Emu 114, 129–136. https://doi.org/10.1071/MU13010 (2014).
Google Scholar
Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S. & Bello, J. P. Robust sound event detection in bioacoustic sensor networks. PLoS One 14, e0214168. https://doi.org/10.1371/journal.pone.0214168 (2019).
Google Scholar
Albin, A. PraatR: An architecture for controlling the phonetics software “Praat” with the R programming language. J. Acoust. Soc. Am. 135, 2198. https://doi.org/10.1121/1.4877175 (2014).
Google Scholar
Source: Ecology - nature.com