Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).
Google Scholar
Dillon, R. J. & Dillon, V. M. THE gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71–92 (2004).
Google Scholar
Duplouy, A., Hursts, G. D. D., O’neill, S. L. & Charlat, S. Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. J. Evol. Biol. 23, 231–235 (2010).
Google Scholar
Altizer, S. M., Oberhauser, K. S. & Brower, L. P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 25, 125–139 (2000).
Jiggins, X., Hurst, X., Dolman, X. & Majerus, X. High-prevalence male-killing Wolbachia in the butterfly Acraea encedana. J. Evol. Biol. 13, 495–501 (2000).
Xu, P., Liu, Y., Graham, R. I., Wilson, K. & Wu, K. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt Biopesticide. PLoS Pathog. 10, e1004490 (2014).
Google Scholar
Bapatla, K. G., Singh, A., Yeddula, S. & Patil, R. H. Annotation of gut bacterial taxonomic and functional diversity in Spodoptera litura and Spilosoma obliqua. J. Basic Microbiol. 58, 217–226 (2018).
Google Scholar
Chen, F. et al. Effects of Wolbachia on mitochondrial DNA variation in populations of Athetis lepigone (Lepidoptera: Noctuidae) in China. Mitochondrial DNA Part A 28, 826–834 (2017).
Google Scholar
van Nieukerken, E. J. et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 1758, 212–221 (2011).
Duplouy, A. & Hornett, E. A. Uncovering the hidden players in Lepidoptera biology: The heritable microbial endosymbionts. PeerJ 6, e4629 (2018).
Google Scholar
Werren, J. H., Windsor, D. & Guo, L. Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. Lond. Ser. B Biol. Sci. 262, 197–204 (1995).
Google Scholar
Salunke, B. K. et al. Determination of Wolbachia diversity in butterflies from Western Ghats, India, by a multigene approach. Appl. Environ. Microbiol. 78, 4458–4467 (2012).
Google Scholar
Duplouy, A. & Brattström, O. Wolbachia in the genus Bicyclus: A forgotten player. Microb. Ecol. 75, 255–263 (2018).
Google Scholar
Jiggins, F. M., Bentley, J. K., Majerus, M. E. & Hurst, G. D. How many species are infected with Wolbachia ? Cryptic sex ratio distorters revealed to be common by intensive sampling. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1123–1126 (2001).
Google Scholar
Tagami, Y. & Miura, K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. Insect Mol. Biol. 13, 359–364 (2004).
Google Scholar
Ilinsky, Y. & Kosterin, O. E. Molecular diversity of Wolbachia in Lepidoptera: Prevalent allelic content and high recombination of MLST genes. Mol. Phylogenet. Evol. 109, 164–179 (2017).
Google Scholar
Sazama, E. J., Ouellette, S. P. & Wesner, J. S. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 48, 127–133 (2019).
Google Scholar
Zaspel, J. M. Systematics, biology, and behavior of fruit-piercing and blood-feeding moths in the subfamily calpinae (lepidoptera: noctuidae). (2008).
Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 25 (2014).
Ilinsky, Y. et al. Detection of bacterial symbionts (Wolbachia, Spiroplasma)and eukaryotic pathogen (Microsporidia) in Japanese populationsof gypsy moth species (Lymantria spp.). Euroasian Entomol. J. 16, 1–5 (2017).
Boonsit, P. & Wiwatanaratanabutr, I. Infection density, diversity, and distribution of Wolbachia bacteria in moths (Order Lepidoptera): First systematic report from Thailand. J. Asia-Pac. Entomol. 24, 20 (2021).
Gavotte, L. et al. A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol. Biol. Evol. 24, 427–435 (2006).
Google Scholar
Wang, G. H. et al. Bacteriophage WO can mediate horizontal gene transfer in endosymbiotic wolbachia genomes. Front. Microbiol. 7, 1–16 (2016).
Wang, N., Jia, S., Xu, H., Liu, Y. & Huang, D. Multiple horizontal transfers of bacteriophage WO and host wolbachia in fig wasps in a closed community. Front. Microbiol. 7, 1–10 (2016).
Tanaka, K., Furukawa, S., Nikoh, N., Sasaki, T. & Fukatsu, T. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the wolbachia genome. Appl. Environ. Microbiol. 75, 5676–5686 (2009).
Google Scholar
Kaushik, S., Sharma, K. K., Ramani, R. & Lakhanpaul, S. Detection of Wolbachia phage (WO) in Indian Lac insect [Kerria lacca (Kerr)] and its implications. Indian J. Microbiol. 59, 237–240 (2019).
Google Scholar
LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).
Google Scholar
Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl. Acad. Sci. 115, 4987 (2018).
Google Scholar
Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).
Google Scholar
Kent, B. N. & Bordenstein, S. R. Phage WO of Wolbachia: Lambda of the endosymbiont world. Trends Microbiol. 18, 173–181 (2010).
Google Scholar
Dale, C., Young, S. A., Haydon, D. T. & Welburn, S. C. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl. Acad. Sci. 98, 1883–1888 (2001).
Google Scholar
Boyd, B. M. et al. Two bacterial genera, sodalis and rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl. Environ. Microbiol. 82, 3185–3197 (2016).
Google Scholar
Fukatsu, T. et al. Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl. Environ. Microbiol. 73, 6660–6668 (2007).
Google Scholar
Šochová, E., Husník, F., Nováková, E., Halajian, A. & Hypša, V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. PeerJ 5, e4099 (2017).
Google Scholar
Burke, G. R., Normark, B. B., Favret, C. & Moran, N. A. Evolution and diversity of facultative symbionts from the aphid subfamily lachninae. Appl. Environ. Microbiol. 75, 5328–5335 (2009).
Google Scholar
Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder sodalis: A new bacteriome-associated endosymbiont of the lygaeoid bug henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).
Google Scholar
Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).
Google Scholar
Conord, C. et al. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: Additional evidence of symbiont replacement in the dryophthoridae family. Mol. Biol. Evol. 25, 859–868 (2008).
Google Scholar
Kaiwa, N. et al. Bacterial symbionts of the giant jewel stinkbug Eucorysses grandis (Hemiptera: Scutelleridae). Zool. Sci. 28, 169–174 (2011).
Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5, 180369 (2018).
Google Scholar
Sameshima, S., Hasegawa, E., Kitade, O., Minaka, N. & Matsumoto, T. Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zool. Sci. 16, 993–1000 (1999).
Google Scholar
Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 5, 16 (2019).
Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).
Google Scholar
Khojandi, N., Haselkorn, T. S., Eschbach, M. N., Naser, R. A. & DiSalvo, S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. ISME J. 13, 2068–2081 (2019).
Google Scholar
Itoh, H. et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc. Natl. Acad. Sci. USA 116, 22673–22682 (2019).
Google Scholar
Ohbayashi, T., Itoh, H., Lachat, J., Kikuchi, Y. & Mergaert, P. Burkholderia gut symbionts associated with European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). Microbes Environ. 34, 219–222 (2019).
Google Scholar
Itoh, H. et al. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae). Appl. Environ. Microbiol. 80, 5974–5983 (2014).
Google Scholar
Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 8618–8622 (2012).
Google Scholar
Louis, F. et al. The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. J. Virol. 87, 9649–9660 (2013).
Google Scholar
Ghanavi, H. R., Twort, V., Hartman, T. J., Zahiri, R. & Wahlberg, N. The (non) accuracy of mitochondrial genomes for family level phylogenetics: The case of erebid moths (Lepidoptera; Erebidae). bioRxiv https://doi.org/10.1101/2021.07.14.452330 (2021).
Google Scholar
Rigaud, T. & Juchault, P. Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. J. Evol. Biol. 8, 25 (1995).
Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124 (2012).
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics https://doi.org/10.1093/bioinformatics/btr026 (2011).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).
Google Scholar
Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
Google Scholar
Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).
Google Scholar
Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia Symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 20 (2012).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 20 (2009).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Google Scholar
Source: Ecology - nature.com