in

Emergence of methicillin resistance predates the clinical use of antibiotics

  • 1.

    Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    European Centre for Disease Prevention and Control, European Medicines Agencies. The Bacterial Challenge: Time to React. A Call to Narrow the Gap Between Multidrug-Resistant Bacteria in the EU and the Development of New Antibacterial Agents https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (2009).

  • 3.

    Jevons, M. P. “Celbenin”—resistant Staphylococci. Br. Med. J. 1, 124–125 (1961).

    PubMed Central 

    Google Scholar 

  • 4.

    Harkins, C. P. et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18, 130 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Chambers, H. F. & DeLeo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3, e00305-11 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (WHO, 2017).

  • 8.

    Rasmussen, S. L. et al. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE 14, e0222031 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Bengtsson, B. et al. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 207, 103–107 (2017).

    PubMed 

    Google Scholar 

  • 10.

    García-Álvarez, L. et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11, 595–603 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Paterson, G. K., Harrison, E. M. & Holmes, M. A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22, 42–47 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Marples, M. J. & Smith, J. M. B. The hedgehog as a source of human ringworm. Nature 188, 867–868 (1960).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    English, M. P., Evans, C. D., Hewitt, M. & Warin, R. P. “Hedgehog ringworm”. Br. Med. J. 1, 149–151 (1962).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Smith, J. M. B. & Marples, M. J. A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature 201, 844 (1964).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Smith, J. M. B. & Marples, M. J. Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci. J. Hyg. 63, 293–303 (1965).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Smith, J. M. B. Staphylococcus aureus strains associated with the hedgehog Erinaceus europaeus. J. Hyg. Camb. 63, 293–303 (1965).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Morris, P. & English, M. P. Trichophyton mentagrophytes var. erinacei in British hedgehogs. Sabouraudia 7, 122–128 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Le Barzic, C. et al. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. J. Fungi 7, 74 (2021).

    Google Scholar 

  • 19.

    Dube, F., Söderlund, R., Salomonsson, M. L., Troell, K. & Börjesson, S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs: a pilot-study. BMC Microbiol. 21, 212 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Brockie, R. E. Distribution and abundance of the hedgehog (Erinaceus europaeus) L. in New Zealand, 1869–1973. N. Z. J. Zool. 2, 445–462 (1975).

    Google Scholar 

  • 22.

    van den Berg, M. A. et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 26, 1161–1168 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Ullán, R. V., Campoy, S., Casqueiro, J., Fernández, F. J. & Martín, J. F. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem. Biol. 14, 329–339 (2007).

    PubMed 

    Google Scholar 

  • 24.

    Kitano, K. et al. A novel penicillin produced by strains of the genus Paecilomyces. J. Ferment. Technol. 54, 705–711 (1976).

    CAS 

    Google Scholar 

  • 25.

    Petersen, A. et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 19, E16–E22 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Holden, M. T. G. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Strauß, L. et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA 114, E10596–E10604 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Nübel, U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 105, 14130–14135 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Rasmussen, S. L., Nielsen, J. L., Jones, O. R., Berg, T. B. & Pertoldi, C. Genetic structure of the European hedgehog (Erinaceus europaeus) in Denmark. PLoS ONE 15, e0227205 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Hansen, J. E. et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 10, 2733 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Eriksson, J. Espinosa-Gongora, C., Stamphøj, I., Larsen, A. R. & Guardabassi, L. Carriage frequency, diversity and methicillin resistance of in Danish small ruminants. Vet. Microbiol. 163, 110–115 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Danish Integrated Antimicrobial Resistance Monitoring and Research Programme. DANMAP 2019: Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria From Food Animals, Food, and Humans in DENMARK https://www.danmap.org/-/media/Sites/danmap/Downloads/Reports/2019/DANMAP_2019.ashx?la=da&hash=AA1939EB449203EF0684440AC1477FFCE2156BA5 (2020).

  • 34.

    Veterinary Medicines Directorate. UK Veterinary Antibiotic Resistance and Sales Surveillance Reporthttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950126/UK-VARSS_2019_Report__2020-TPaccessible.pdf (2020).

  • 35.

    Harrison, E. M. et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5, 509–515 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Loncaric, I. et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 230, 138–144 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Gómez, P. et al. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 71, 53–57 (2016).

    PubMed 

    Google Scholar 

  • 38.

    Kim, C. et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem. 287, 36854–36863 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Tahlan, K. & Jensen, S. E. Origins of the β-lactam rings in natural products. J. Antibiot. 66, 401–419 (2013).

    CAS 

    Google Scholar 

  • 40.

    Pantůček, R. et al. Staphylococcus edaphicus sp. nov. isolated in Antarctica harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environment. Appl. Environ. Microbiol. 84, e01746-17 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    D’Costa, V. M., et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • 42.

    Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J. 3, 243–251 (2009).

    CAS 

    Google Scholar 

  • 43.

    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Coll, F. et al. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe 1, e328–e335 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its application to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Van Wamel, W. J., Rooijakkers, S. H., Ruyken, M. van Kessel, K. P. & Strijp, J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involved SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010).

  • 50.

    Rooijakkers, S. H. M. et al. Staphylococcal complement inhibitor: structure and active sites. J. Immunol. 179, 2989–2998 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Clausen, P. T. L. C., Aarestrup, F. M. & Lund, O. Rapid and precise alignment of raw reads against redundant database with KMA. BMC Bioinform. 19, 397 (2018).

    Google Scholar 

  • 54.

    Sahl, J. W. et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2, e000074 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrow-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Kurz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Google Scholar 

  • 60.

    Guindon, S. & Gasquel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    PubMed 

    Google Scholar 

  • 61.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 

    Google Scholar 

  • 62.

    Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genome. PLoS Comput. Biol. 11, e1004041 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Didelot, X. et al. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Didelot, X., Siveroni, I. & Volz, E. M. Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies. Mol. Biol. Evol. 38, 307–317 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).

    Google Scholar 

  • 66.

    Volz, E. M. & Frost, S. D. Scalable relaxed clock phylogenetic dating. Virus Evol. 3, vex025 (2017).

    Google Scholar 

  • 67.

    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Adusumilli, R. & Mallick, P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339–368 (2017).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Meet the 2021-22 Accenture Fellows

    Reducing food waste to increase access to affordable foods