in

The discrepancy between fire ant recruitment to and performance on rodent carrion

  • 1.

    Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1), 12–24 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Weathers, K. C., Strayer, D. L. & Likens, G. E. Fundamentals of Ecosystem Science (Academic Press, 2012).

    Google Scholar 

  • 3.

    Payne, J. A. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5), 592–602 (1965).

    Google Scholar 

  • 4.

    Anderson, G. S., Cervenka, V. J., Haglund, W. & Sorg, M. Insects associated with the body: Their use and analyses. Adv. Forens. Taphonomy 2, 1 (2002).

    Google Scholar 

  • 5.

    Smith, K. G. A manual of forensic entomology. (1986).

  • 6.

    Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).

    PubMed 

    Google Scholar 

  • 7.

    Benbow, M. E., Tomberlin, J. K. & Tarone, A. M. Carrion Ecology, Evolution, and Their Applications (CRC Press, 2015).

    Google Scholar 

  • 8.

    Wilson, E. E., Mullen, L. M. & Holway, D. A. Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci. 106(31), 12809–12813 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Pechal, J. L. et al. Field documentation of unusual post-mortem arthropod activity on human remains. J. Med. Entomol. 52(1), 105–108 (2015).

    PubMed 

    Google Scholar 

  • 10.

    Campobasso, C. P., Marchetti, D., Introna, F. & Colonna, M. F. Postmortem artifacts made by ants and the effect of ant activity on decompositional rates. Am. J. Forens. Med. Pathol. 30(1), 84–87 (2009).

    Google Scholar 

  • 11.

    Eubanks, M. D., Lin, C. & Tarone, A. M. The role of ants in vertebrate carrion decomposition. Food Webs 18, e00109 (2019).

    Google Scholar 

  • 12.

    Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 2, 51–63 (1974).

    Google Scholar 

  • 13.

    Andrade-Silva, J., Pereira, E. K. C., Silva, O., Delabie, J. H. C. & Rebelo, J. M. M. Ants (Hymenoptera: Formicidae) associated with pig carcasses in an urban area. Sociobiology 62(4), 527–532 (2015).

    Google Scholar 

  • 14.

    Chin, H. C. et al. Ants (Hymenoptera: Formicidae) associated with pig carcasses in Malaysia. Trop. Biomed. 26(1), 106–109 (2009).

    Google Scholar 

  • 15.

    Prado Castro, C., García, M. D., Palma, C. & Martínez-Ibáñez, M. D. First report on sarcosaprophagous Formicidae from Portugal (Insecta: Hymenoptera). Annales de la Société entomologique de France 50(1), 51–58 (2014).

    Google Scholar 

  • 16.

    Neto-Silva, A., Dinis-Oliveira, R. J. & Prado e Castro, C.,. Diversity of the Formicidae (Hymenoptera) carrion communities in Lisbon (Portugal): Preliminary approach as seasonal and geographic indicators. Forens. Sci. Res. 3(1), 65–73 (2018).

    Google Scholar 

  • 17.

    Payne, J. A., King, E. W. & Beinhart, G. Arthropod succession and decomposition of buried pigs. Nature 219(5159), 1180–1181 (1968).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Meyer, F., Monroe, M. D., Williams, H. N. & Goddard, J. Solenopsis invicta x richteri (Hymenoptera: Formicidae) necrophagous behavior causes post-mortem lesions in pigs which serve as oviposition sites for Diptera. Forens. Sci. Int. Rep. 2, 100067 (2020).

    Google Scholar 

  • 19.

    De Jong, G. D., Meyer, F. & Goddard, J. Relative roles of blow flies (Diptera: Calliphoridae) and invasive fire ants (Hymenoptera: Formicidae: Solenopsis spp.) in carrion decomposition. J. Med. Entomol. 58(3), 1074–1082 (2021).

    PubMed 

    Google Scholar 

  • 20.

    Early, M. & Goff, M. L. Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian Islands, USA. J. Med. Entomol. 23(5), 520–531 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Stoker, R. L., Grant, W. E. & Bradleigh Vinson, S. Solenopsis invicta (Hymenoptera: Formicidae) effect on invertebrate decomposers of carrion in central Texas. Environ. Entomol. 24(4), 817–822 (1995).

    Google Scholar 

  • 22.

    Ekanem, M. S. & Dike, M. C. Arthropod succession on pig carcasses in southeastern Nigeria. Papeis Avulsos de Zoologia 50, 561–570 (2010).

    Google Scholar 

  • 23.

    Lindgren, N. K., Bucheli, S. R., Archambeault, A. D. & Bytheway, J. A. Exclusion of forensically important flies due to burying behavior by the red imported fire ant (Solenopsis invicta) in southeast Texas. Forensic Sci. Int. 204(1–3), e1–e3 (2011).

    PubMed 

    Google Scholar 

  • 24.

    Pereira, E. K. C. et al. Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) activity delays vertebrate carcass decomposition. Sociobiology 64(3), 369–372 (2017).

    Google Scholar 

  • 25.

    Dussutour, A. & Simpson, S. J. Description of a simple synthetic diet for studying nutritional responses in ants. Insectes Soc. 55(3), 329–333 (2008).

    Google Scholar 

  • 26.

    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).

    Google Scholar 

  • 27.

    Tschinkel, W. R. The Fire Ants (Belknap Press, 2013).

    Google Scholar 

  • 28.

    Paula, M. C. et al. Action of ants on vertebrate carcasses and blow flies (Calliphoridae). J. Med. Entomol. 53(6), 1283–1291 (2016).

    PubMed 

    Google Scholar 

  • 29.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).

    Google Scholar 

  • 30.

    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2 4, (2019).

  • 31.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, 2018).

    Google Scholar 

  • 32.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 50(3), 346–363 (2008).

    MathSciNet 
    MATH 

    Google Scholar 

  • 33.

    Porter, S. D., Bhatkar, A., Mulder, R., Vinson, B. S. & Clair, D. J. Distribution and density of polygyne fire ants (Hymenoptera: Formicidae) in Texas. J. Econ. Entomol. 84(3), 866–874 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Cook, S. C., Eubanks, M. D., Gold, R. E. & Behmer, S. T. Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Anim. Behav. 79(2), 429–437 (2010).

    Google Scholar 

  • 35.

    Smith, C. R. & Tschinkel, W. R. Ant fat extraction with a Soxhlet extractor. Cold Spring Harbor Protocols 7, 5243 (2009).

    Google Scholar 

  • 36.

    Wills, B. D. et al. Effect of carbohydrate supplementation on investment into offspring number, size, and condition in a social insect. PLoS ONE 10(7), e0132440 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Bockoven, A. A., Wilder, S. M. & Eubanks, M. D. Intraspecific variation among social insect colonies: persistent regional and colony-level differences in fire ant foraging behavior. PLoS ONE 10(7), e0133868 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1), 1–48 (2015).

    Google Scholar 

  • 39.

    Gavilanez-Slone, J. & Porter, S. D. Colony growth of two species of Solenopsis fire ants (Hymenoptera: Formicidae) reared with crickets and beef liver. Florida Entomol. 96(4), 1482–1488 (2013).

    Google Scholar 

  • 40.

    Sorensen, A. A., Busch, T. M. & Vinson, S. B. Factors affecting brood cannibalism in laboratory colonies of the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 140–150 (1983).

    Google Scholar 

  • 41.

    Williams, D. F., Vander Meer, R. K. & Lofgren, C. S. Diet-induced nonmelanized cuticle in workers of the imported fire ant Solenopsis invicta Buren. Arch. Insect Biochem. Physiol. 4(4), 251–259 (1987).

    CAS 

    Google Scholar 

  • 42.

    Porter, S. D. Effects of diet on the growth of laboratory fire ant colonies (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 288–291 (1989).

    Google Scholar 

  • 43.

    Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Florida Entomol. 2, 229–232 (1970).

    Google Scholar 

  • 44.

    Porter, S. D., Valles, S. M. & Gavilanez-Slone, J. M. Long-term efficacy of two cricket and two liver diets for rearing laboratory fire ant colonies (Hymenoptera: Formicidae: Solenopsis invicta). Florida Entomol. 98(3), 991–993 (2015).

    Google Scholar 

  • 45.

    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B Biol. Sci. 284(1846), 20162052 (2017).

    Google Scholar 

  • 46.

    Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis Invicta during one annual cycle. Ecol. Monogr. 63(4), 425–457 (1993).

    Google Scholar 

  • 47.

    Deslippe, R. J. & Savolainen, R. Sex investment in a social insect: The proximate role of food. Ecology 76(2), 375–382 (1995).

    Google Scholar 

  • 48.

    Rosenfeld, C. S. & Roberts, R. M. Maternal diet and other factors affecting offspring sex ratio: A review. Biol. Reprod. 71(4), 1063–1070 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Hasegawa, E. Sex allocation in the ant Camponotus (Colobopsis) nipponicus (Wheeler): II. The effect of resource availability on sex-ratio variability. Insectes Soc. 60(3), 329–335 (2013).

    Google Scholar 

  • 50.

    Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Liu, W., Longnecker, M., Tarone, A. M. & Tomberlin, J. K. Responses of Lucilia sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim. Behav. 115, 217–225 (2016).

    Google Scholar 

  • 52.

    Tomberlin, J. K. et al. Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays 39(2), 1600203 (2017).

    Google Scholar 

  • 53.

    Frederickx, C. et al. Volatile organic compounds released by blowfly larvae and pupae: New perspectives in forensic entomology. Forensic Sci. Int. 219(1–3), 215–220 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Frederickx, C., Dekeirsschieter, J., Verheggen, F. J. & Haubruge, E. Host-habitat location by the parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae). J. Forensic Sci. 59(1), 242–249 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Schettino, M. et al. Response of a predatory ant to volatiles emitted by aphid-and caterpillar-infested cucumber and potato plants. J. Chem. Ecol. 43(10), 1007–1022 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Sawyer, S. J., Rusch, T. W., Tarone, A. M. & Tomberlin, J. K. Wing buzzing as a potential antipredator defense against an invasive predator. Food Webs 27, e00192 (2021).

    Google Scholar 

  • 57.

    Wells, J. D. & Greenberg, B. Effect of the red imported fire ant (Hymenoptera: Formicidae) and carcass type on the daily occurrence of postfeeding carrion-fly larvae (Diptera: Calliphoridae, Sarcophagidae). J. Med. Entomol. 31(1), 171–174 (1994).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Resilience of countries to COVID-19 correlated with trust

    Understanding air pollution from space