Askew, A. P., Corker, D., Hodkinson, J. & Thompson, K. A new apparatus to measure the rate of fall of seeds. Funct. Ecol. 11, 121–125. https://doi.org/10.1046/j.1365-2435.1997.00049.x (1997).
Google Scholar
Bohrer, G., Katul, G. G., Nathan, R., Walko, R. L. & Avissar, R. Effects of canopy heterogeneity, seed abscission and inertia on wind-driven dispersal kernels of tree seeds. J. Ecol. 96, 569–580. https://doi.org/10.1111/j.1365-2745.2008.01368.x (2008).
Google Scholar
Nathan, R. et al. Mechanistic models of seed dispersal by wind. Thyroid Res. 4, 113–132. https://doi.org/10.1007/s12080-011-0115-3 (2011).
Google Scholar
Abedi-Lartey, M., Dechmann, D. K. N., Wikelski, M., Scharf, A. K. & Fahr, J. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Global Ecol. Conserv. 7, 12–24. https://doi.org/10.1016/j.gecco.2016.03.005 (2016).
Google Scholar
Garcıa, C., Klein, E. K. & Jordano, P. Dispersal processes driving plant movement: Challenges for understanding and predicting range shifts in a changing world. J. Ecol. 105, 1–5. https://doi.org/10.1111/1365-2745.12705 (2017).
Google Scholar
Sutherland, W. J. et al. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58–67. https://doi.org/10.1111/1365-2745.12025 (2013).
Google Scholar
Beckman, N. G., Aslan, C. E. & Rogers, H. S. The role of seed dispersal in plant populations: Perspectives and advances in a changing world. AoB Plants 12, plaa010. https://doi.org/10.1093/aobpla/plaa010 (2020).
Google Scholar
Willson, M. F., Rice, B. L. & Westoby, M. Seed dispersal spectra: a comparison of temperate plant-communities. J. Veg. Sci. 1, 547–562 (1990).
Google Scholar
van Rheede, K., Oudtshoorn, V. & van Rooyen, M. W. Dispersal Biology of Desert Plants (Springer, 1999).
Clark, J. S., Silman, M., Kern, R. & Hillerislambers, M. J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494. https://doi.org/10.2307/176541 (1999).
Google Scholar
Maler, A., Emig, W. & Leins, P. Dispersal patterns of some Phyteuma species (Campanulaceae). Plant Biol. 1, 408–417. https://doi.org/10.1111/j.1438-8677.1999.tb00723.x (1999).
Google Scholar
Baker, D. V. & Beck, G. The weed tunnel: building an experimental wind tunnel. Weed Technol. 22, 549–552. https://doi.org/10.1614/wt-07-162.1 (2008).
Google Scholar
Planchuelo, G., Catalán, P. & Delgado, J. A. Gone with the wind and the stream: Dispersal in the invasive species Ailanthus altissima. Acta Oecol. 73, 31–37. https://doi.org/10.1016/j.actao.2016.02.006 (2016).
Google Scholar
Liang, W. et al. How do diaspore traits, wind speed and sand surface configuration interact to determine seed burial during wind dispersal?. Plant Soil 440, 357–368. https://doi.org/10.1007/s11104-019-04071-4 (2019).
Google Scholar
Zhou, Q. et al. Responses of secondary wind dispersal to environmental characteristics and diaspore morphology of seven Calligonum species. Land Degrad. Dev. 31, 842–850. https://doi.org/10.1002/ldr.3489 (2020).
Google Scholar
Andersen, M. C. An analysis of variability in seed settling velocities of several wind-dispersed Asteraceae. Am. J. Bot. https://doi.org/10.1002/j.1537-2197.1992.tb13702.x (1992).
Google Scholar
Augspurger, C. K., Franson, S. E., Cushman, K. C. & Muller-Landau, H. C. Intraspecific variation in seed dispersal of a Neotropical tree and its relationship to fruit and tree traits. Ecol. Evol. 6, 1128–1142. https://doi.org/10.1002/ece3.1905 (2016).
Google Scholar
Greene, D. F. & Quesada, M. The differential effect of updrafts, downdrafts and horizontal winds on the seed abscission of Tragopogon dubius. Funct. Ecol. 25, 468–472. https://doi.org/10.1111/j.1365-2435.2010.01788.x (2011).
Google Scholar
Paice, M., Day, W., Rew, J. & Howard, A. A simulation model for evaluating the concept of patch spraying. Weed Res. 38, 373–388 (1998).
Google Scholar
Jongejans, E. & Telenius, A. Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). Plant Ecol. 152, 67–78. https://doi.org/10.1023/a:1011467604469 (2001).
Google Scholar
Augspurger, C. K. Morphology and dispersal potential of wind-dispersed diaspore of neotropical trees. Am. J. Bot. 73, 353–363 (1986).
Google Scholar
Zhu, J., Liu, M., Xin, Z., Liu, Z. & Schurr, F. M. A trade-off between primary and secondary seed dispersal by wind. Plant Ecol. 220, 541–552. https://doi.org/10.1007/s11258-019-00934-z (2019).
Google Scholar
Phartyal, S. S., Rosbakh, S., Ritz, C., Poschlod, P. & Bruun, H. H. Ready for change: Seed traits contribute to the high adaptability of mudflat species to their unpredictable habitat. J. Veg. Sci. 31, 331–342. https://doi.org/10.1111/jvs.12841 (2020).
Google Scholar
Saatkamp, A. et al. A research agenda for seed-trait functional ecology. New Phytol. 221, 1764–1775. https://doi.org/10.1111/nph.15502 (2019).
Google Scholar
Green, D. S. The terminal velocity and dispersal of spinning samaras. Am. J. Bot. 67, 1218–1224 (1980).
Google Scholar
Jongejans, E., Pedatella, N. M., Shea, K., Skarpaas, O. & Auhl, R. Seed release by invasive thistles: the impact of plant and environmental factors. Proc R Soc B Biol Sci 274, 2457–2464. https://doi.org/10.1098/rspb.2007.0190 (2007).
Google Scholar
Andersen, M. Mechanistic models for the seed shadows of wind-dispersed plants. Am. Nat. 137, 476–497. https://doi.org/10.1086/285178 (1991).
Google Scholar
Cousens, R. D. & Rawlinson, A. A. When will plant morphology affect the shape of a seed dispersal “kernel”?. J Thenr Biol. 211, 229–238. https://doi.org/10.1006/jtbi.2001.2341 (2001).
Google Scholar
Qin, X. et al. Shrub canopy interception of diaspores dispersed by wind. Seed Sci. Res. 30, 310–318. https://doi.org/10.1017/S0960258520000410 (2020).
Google Scholar
Kelly, N., Cousens, R. D., Taghizadeh, M. S. & Hanan, J. S. Plants as populations of release sites for seed dispersal: A structural-statistical analysis of the effects of competition on Raphanus raphanistrum. J. Ecol. 101, 878–888. https://doi.org/10.1111/1365-2745.12097 (2013).
Google Scholar
Donohue, K. Maternal determinants of seed dispersal in cakile edentula: Fruit, plant, and site traits. Ecology 79, 2771–2788 (1998).
Google Scholar
Bullock, J. M. & Moy, I. L. Plants as seed traps: inter-specific interference with dispersal. Acta Oecol. 25, 35–41. https://doi.org/10.1016/j.actao.2003.10.005 (2004).
Google Scholar
Cousens, R., Dytham, C. & Law, R. Dispersal in plants. A population perspective. Ann. Bot. https://doi.org/10.1111/j.1442-9993.2010.02216.x (2008).
Google Scholar
Phillips, M. L. Dispersal in plants: A population perspective. Austral Ecol. 36, e27 (2011).
Pounden, E., Greene, D. F., Quesada, M. & Contreras Sánchez, J. M. The effect of collisions with vegetation elements on the dispersal of winged and plumed seed. J. Ecol. 96, 591–598 (2008).
Google Scholar
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. The effect of vegetation density on canopy sub-layer turbulence. BoLMe 111, 565–587 (2004).
Google Scholar
Greene, D. F. The role of abscission in long-distance seed dispersal by the wind. Ecology 86, 3105–3110 (2005).
Google Scholar
Matlack, G. R. Diaspore size, shape, and fall behavior in wind-dispersed plant species. Am. J. Bot. https://doi.org/10.1002/j.1537-2197.1987.tb08729.x (1987).
Google Scholar
Zhou, Q. et al. Relationship between seed morphological traits and wind dispersal trajectory. Funct. Plant Biol. 46, 1063–1071. https://doi.org/10.1071/FP19087 (2019).
Google Scholar
Heydel, F., Cunze, S., Bernhardt-Römermann, M. & Tackenberg, O. Long-distance seed dispersal by wind: Disentangling the effects of species traits, vegetation types, vertical turbulence and wind speed. Ecol. Res. 29, 641–651. https://doi.org/10.1007/s11284-014-1142-5 (2014).
Google Scholar
Greene, D. F. & Johnson, E. A. Long-distance wind dispersal of tree seeds. Can J Bot. 73, 1036–1045 (1995).
Google Scholar
Skarpaas, O., Auhl, R. & Shea, K. Environmental variability and the initiation of dispersal: turbulence strongly increases seed release. Proc. R. Soc. B Biol. Sci. 273, 751–756. https://doi.org/10.1098/rspb.2005.3366 (2006).
Google Scholar
Lipoma, M. L., Cuchietti, A., Gorne, L. D., Díaz, S. M. & Zobel, M. Not gone with the wind: Vegetation complexity increases seed retention during windy periods in the Argentine Semiarid Chaco. J. Veg. Sci. 30, 542–552. https://doi.org/10.1111/jvs.12747 (2019).
Google Scholar
Soons, M. B., Heil, G. W., Ran, N. & Katul, G. G. Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85, 3056–3068. https://doi.org/10.1890/03-0522 (2004).
Google Scholar
Soons, M. B. & Bullock, J. M. Non-random seed abscission, long-distance wind dispersal and plant migration rates. J. Ecol. 96, 581–590. https://doi.org/10.1111/j.1365-2745.2008.01370.x (2008).
Google Scholar
Rotundo, J. L. & Aguiar, M. R. Litter effects on plant regeneration in arid lands: A complex balance between seed retention, seed longevity and soil–seed contact. J. Ecol. 93, 829–838. https://doi.org/10.1111/j.1365-2745.2005.01022.x (2005).
Google Scholar
Tackenberg, O., Poschlod, P. & Bonn, S. Assessment of wind dispersal potential in plant species. Ecol. Monogr. 73, 191–205 (2003).
Google Scholar
Schurr, F. M., Bond, W. J., Midgley, G. F. & Higgins, S. I. A mechanistic model for secondary seed dispersal by wind and its experimental validation. J. Ecol. 93, 1017–1028. https://doi.org/10.1111/j.1365-2745.2005.01018.x (2005).
Google Scholar
McGinley, M. & Brigham, E. Fruit morphology and terminal velocity in Tragopogon dubious (L). Funct. Ecol. 4, 489–496 (1989).
Google Scholar
Source: Ecology - nature.com