in

Soil δ13C and δ15N baselines clarify biogeographic heterogeneity in isotopic discrimination of European badgers (Meles meles)

  • 1.

    Kelly, J. F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool. 78(1), 1–27 (2000).

    Article 

    Google Scholar 

  • 2.

    Barnes, C., Sweeting, C. J., Jennings, S., Barry, J. & TandPolunin, N. V. Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Funct. Ecol. 21(2), 356–362. https://doi.org/10.1111/j.1365-2435.2006.01224.x (2007).

    Article 

    Google Scholar 

  • 3.

    Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216(4550), 1131–1132. https://doi.org/10.1126/science.216.4550.1131 (1982).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 4.

    O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).

    CAS 
    Article 

    Google Scholar 

  • 5.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506. https://doi.org/10.1016/0016-7037(78)90199-0 (1978).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 6.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351. https://doi.org/10.1016/0016-7037(81)90244-1 (1981).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • 8.

    McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2), 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ 13 C analysis of diet. Oecologia 57(1–2), 32–37. https://doi.org/10.1007/BF00379558 (1983).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 10.

    Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106(1–2), 131–148. https://doi.org/10.1016/j.earscirev.2011.02.001 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 11.

    West, J. B. et al. (eds) Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (Springer, 2009).

    Google Scholar 

  • 12.

    Cheeseman, A. W. & Cernusak, L. A. Isoscapes: A new dimension in community ecology. Tree Physiol. 36(12), 1456–1459. https://doi.org/10.1093/treephys/tpw099 (2016).

    Article 

    Google Scholar 

  • 13.

    Hellmann, C., Rascher, K. G., Oldeland, J. & Werner, C. Isoscapes resolve species-specific spatial patterns in plant–plant interactions in an invaded Mediterranean dune ecosystem. Tree Physiol. 36(12), 1460–1470. https://doi.org/10.1093/treephys/tpw075 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Chiocchini, F., Portarena, S., Ciolfi, M., Brugnoli, E. & Lauteri, M. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils. Food Chem. 202, 291–301. https://doi.org/10.1016/j.foodchem.2016.01.146 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Newton, J. An insect isoscape of UK and Ireland. Rapid Commu. Mass Spectrom. 1, e9126 (2021).

    Google Scholar 

  • 16.

    Veen, T. et al. Identifying the African wintering grounds of hybrid flycatchers using a multi–isotope (δ 2 H, δ 13 C, δ 15 N) assignment approach. PLoS ONE 9(5), e98075 (2014).

    Article 
    ADS 

    Google Scholar 

  • 17.

    Schneider, K. et al. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biol. Biochem. 36(11), 1769–1774. https://doi.org/10.1016/j.soilbio.2004.04.033 (2004).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Menichetti, L. et al. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: Results from five long-term bare fallow experiments. Oecologia 177(3), 811–821. https://doi.org/10.1007/s00442-014-3114-4 (2015).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 19.

    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002GB001903 (2003).

    Article 

    Google Scholar 

  • 20.

    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396(1–2), 1–26. https://doi.org/10.1007/s11104-015-2542-1 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Ben-David, M. & Flaherty, E. A. Stable isotopes in mammalian research: A beginner’s guide. J. Mammal. 93(2), 312–328. https://doi.org/10.1644/11-MAMM-S-166.1 (2012).

    Article 

    Google Scholar 

  • 22.

    del Rio, C. M. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93(2), 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).

    Article 

    Google Scholar 

  • 23.

    Clementz, M. T. New insight from old bones: Stable isotope analysis of fossil mammals. J. Mammal. 93(2), 368–380. https://doi.org/10.1644/11-MAMM-S-179.1 (2012).

    Article 

    Google Scholar 

  • 24.

    Inger, R. et al. Temporal and intrapopulation variation in prey choice of wintering geese determined by stable isotope analysis. J. Anim. Ecol. 75(5), 1190–1200. https://doi.org/10.1111/j.1365-2656.2006.01142.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Jackson, M. C. et al. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE https://doi.org/10.1371/journal.pone.0031757 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Semmens, B. X. et al. Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013). Mar. Ecol. Prog. Ser. 490, 285–289. https://doi.org/10.3354/meps10535 (2013).

    Article 
    ADS 

    Google Scholar 

  • 28.

    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE https://doi.org/10.2307/1310735 (1988).

    Article 

    Google Scholar 

  • 29.

    Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92(10), 823–835. https://doi.org/10.1139/cjz-2014-0127 (2010).

    Article 

    Google Scholar 

  • 30.

    Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-00378-3 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Allen, A. et al. Genetic evidence further elucidates the history and extent of badger introductions from Great Britain into Ireland. R. Soc. Open Sci. 7(4), 200–288. https://doi.org/10.1098/rsos.200288 (2020).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Davies, J. M., Lachno, D. R. & Roper, T. J. The anal gland secretion of the European badger (Meles meles) and its role in social communication. J. Zool. 216(3), 455–463. https://doi.org/10.1111/j.1469-7998.1988.tb02441.x (1988).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Lüps, P., Roper, T. J. & Stocker, G. Stomach contents of badgers (Meles meles L.) in central Switzerland. Mammalia 51(4), 559–570. https://doi.org/10.1515/mamm.1987.51.4.559 (1987).

    Article 

    Google Scholar 

  • 34.

    Roper, T. J. The European badger Meles meles: Food specialist or generalist?. J. Zool. 234(3), 437–452. https://doi.org/10.1111/j.1469-7998.1994.tb04858.x (1994).

    Article 

    Google Scholar 

  • 35.

    Roper, T. J. Badger Meles meles setts–architecture, internal environment and function. Mamm. Rev. 22(1), 43–53. https://doi.org/10.1111/j.1365-2907.1992.tb00118.x (1992).

    Article 

    Google Scholar 

  • 36.

    Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549. https://doi.org/10.1111/j.1469-7998.1999.tb01015.x (1999).

    Article 

    Google Scholar 

  • 37.

    Robertson, A., McDonald, R. A., Delahay, R. J., Kelly, S. D. & Bearhop, S. Individual foraging specialisation in a social mammal: The European badger (Meles meles). Oecologia 176(2), 409–421. https://doi.org/10.1007/s00442-014-3019-2 (2014).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 38.

    Haussmann, N. S. Soil movement by burrowing mammals: A review comparing excavation size and rate to body mass of excavators. Prog. Phys. Geogr. 41(1), 29–45. https://doi.org/10.1177/0309133316662569 (2017).

    Article 

    Google Scholar 

  • 39.

    Cabana, G. & Rasmussen, J. B. Comparison of aquatic food chains using nitrogen isotopes. Proc. Acad. Natl. Sci. 93(20), 10844–10847. https://doi.org/10.1073/pnas.93.20.10844 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 40.

    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136(2), 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 41.

    Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5(1), 1–11. https://doi.org/10.1038/srep13062 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Britain, G. The strategy for achieving officially bovine tuberculosis free status for England. Department for Environment, Food & Rural Affairs. https://www.gov.uk/government/publications/a-strategy-for-achieving-officially-bovine-tuberculosis-free-status-for-england. (2014).

  • 43.

    Ireland, G. Spending Review 2019 Animal Health: TB Eradication. Economics and Planning Division, Department of Agriculture, Food and the Marine. http://budget.gov.ie/Budgets/2020/Documents/Budget/Animal%20Health%20-%20TB%20Eradication.pdf. (2019).

  • 44.

    Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J. Zool. 184(1), 1–19. https://doi.org/10.1111/j.1469-7998.1978.tb03262.x (1978).

    Article 

    Google Scholar 

  • 45.

    Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—Conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildl. Conserv. Farmland 2, 65–95 (2015).

    Google Scholar 

  • 46.

    McDonald, J. L., Robertson, A. & Silk, M. J. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112. https://doi.org/10.1111/1365-2656.12743 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728. https://doi.org/10.1111/j.1469-7998.1997.tb05821.x (1997).

    Article 

    Google Scholar 

  • 48.

    Desktop, E. A. Release 10 437–438 (Environmental Systems Research Institute, 2011).

    Google Scholar 

  • 49.

    Kostka, B.I., Landscape ecology, diet composition and energetics of the Eurasian badger (Meles meles). Unpublished PhD thesis, Queen’s University Belfast. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579755. (2012).

  • 50.

    Scheppers, T. L. et al. Estimating social group size of Eurasian badgers Meles meles by genotyping remotely plucked single hairs. Wildl. Biol. 13(2), 195–207. https://doi.org/10.2981/0909-6396(2007)13[195:ESGSOE]2.0.CO;2 (2007).

    Article 

    Google Scholar 

  • 51.

    Geological Survey Ireland. Tellus Geochemical Survey: Shallow Topsoil Data from the Border and West of Ireland. Department of the Environment, Climate and Communications. https://secure.dccae.gov.ie/GSI_DOWNLOAD/Geochemistry/Reports/Tellus_A_geochemistry_data_report_2020_v1.0.pdf. Accessed 7Jun 2021.

  • 52.

    Smyth, D. Methods used in the Tellus Geochemical Mapping of Northern Ireland. http://nora.nerc.ac.uk/id/eprint/14008. (2007).

  • 53.

    Murray, R, McCann, T. P. & Cooper, A. A land classification and landscape ecological survey of Northern Ireland. Report, University of Ulster, Coleraine (1992).

  • 54.

    Stewart, P. D. & Macdonald, D. W. Age, sex, and condition as predictors of moult and the efficacy of a novel fur-clip technique for individual marking of the European badger (Meles meles). J. Zool. 241(3), 543–550. https://doi.org/10.1111/j.1469-7998.1997.tb04846.x (1997).

    Article 

    Google Scholar 

  • 55.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021)

  • 56.

    Met Office. UK Daily Temperature Data, Part of the Met Office Integrated Data Archive System (MIDAS). NCAS British Atmospheric Data Centre, (2006). Accessed 2 Sep 2019.

  • 57.

    Mardia, K. V., Kent, J. T. & Bibby, J. M. Multivariate Analysis (Academic Press Inc, 1979).

    MATH 

    Google Scholar 

  • 58.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

    Book 

    Google Scholar 

  • 59.

    Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A. & Legg, T. State of the UK climate 2017. Int. J. Climatol. 38, 1–35. https://doi.org/10.1139/z99-165 (2018).

    Article 

    Google Scholar 

  • 60.

    Kassambara, A. & Mundt, F., Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses76. https://cran.microsoft.com/snapshot/2016-11-30/web/packages/factoextra/factoextra.pdf. (2017).

  • 61.

    Funck, J., Bataille, C., Rasic, J. & Wooller, M. A bio-available strontium isoscape for eastern Beringia: A tool for tracking landscape use of Pleistocene megafauna. J. Quat. Sci. 36(1), 76–90. https://doi.org/10.1002/jqs.3262 (2021).

    Article 

    Google Scholar 

  • 62.

    Reddin, C. J., Bothwell, J. H., O’Connor, N. E. & Harrod, C. The effects of spatial scale and isoscape on consumer isotopic niche width. Funct. Ecol. 32(4), 904–915. https://doi.org/10.1111/1365-2435.13026 (2018).

    Article 

    Google Scholar 

  • 63.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87(3), 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 64.

    Fabrizio, M. et al. Habitat suitability vs landscape connectivity determining roadkill risk at a regional scale: A case study on European badger (Meles meles). Eur. J. Wildl. Res. 65(1), 7. https://doi.org/10.1007/s10344-018-1241-7 (2019).

    Article 

    Google Scholar 

  • 65.

    Rosalino, L. M. et al. Climate and landscape changes as driving forces for future range shift in southern populations of the European badger. Sci. Rep. 9(1), 1–15. https://doi.org/10.1038/s41598-019-39713-1 (2019).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Potts, J. R., Fagan, W. F. & Mourão, G. Deciding when to intrude on a neighbour: Quantifying behavioural mechanisms for temporary territory expansion. Thyroid Res. 12(3), 307–318. https://doi.org/10.1007/s12080-018-0396-x (2019).

    Article 

    Google Scholar 

  • 67.

    Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European Badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45(10), 823–837. https://doi.org/10.1007/s10886-019-01113-0 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Kurek, P. Topsoil mixing or fertilization? Forest flora changes in the vicinity of badgers’ (Meles meles L.) setts and latrines. Plant Soil 437(1–2), 327–340. https://doi.org/10.1007/s11104-019-03984-4 (2019).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Abduriyim, S. et al. Variation in pancreatic amylase gene copy number among Eurasian badgers (Carnivora, Mustelidae, Meles) and its relationship to diet. J. Zool. 308(1), 28–36. https://doi.org/10.1111/jzo.12649 (2019).

    Article 

    Google Scholar 

  • 70.

    Balestrieri, A., Remonti, L., Saino, N. & Raubenheimer, D. The ‘omnivorous badger dilemma’: Towards an integration of nutrition with the dietary niche in wild mammals. Mamm. Rev. 49(4), 324–339. https://doi.org/10.1111/mam.12164 (2019).

    Article 

    Google Scholar 

  • 71.

    Noonan, M. J. et al. Climate and the individual: Inter-annual variation in the autumnal activity of the European badger (Meles meles). PLoS ONE https://doi.org/10.1371/journal.pone.0083156 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Tsunoda, M., Newman, C., Buesching, C. D., Macdonald, D. W. & Kaneko, Y. Badger setts provide thermal refugia, buffering changeable surface weather conditions. J. Therm. Biol. 74, 226–233. https://doi.org/10.1016/j.jtherbio.2018.04.005 (2018).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Resilience of countries to COVID-19 correlated with trust

    Understanding air pollution from space