Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3–13 (2001).
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
Google Scholar
Van Der Putten, W. H. et al. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161, 1–14 (2009).
Google Scholar
Miyashita, T., Takada, M. & Shimazaki, A. Experimental evidence that aboveground predators are sustained by underground detritivores. Oikos 103, 31–36 (2003).
Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).
Google Scholar
Haraguchi, T. F., Uchida, M., Shibata, Y. & Tayasu, I. Contributions of detrital subsidies to aboveground spiders during secondary succession, revealed by radiocarbon and stable isotope signatures. Oecologia 171, 935–944 (2013).
Google Scholar
Halaj, J. & Wise, D. H. Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web. Ecology 83, 3141 (2002).
Zakharov, A. A. Ants at the border between the epigean and soil blocks of a forest coenosis. Rej 21, 219–222 (2012).
Iakovlev, I. K., Novgorodova, T. A., Tiunov, A. V. & Reznikova, Z. I. Trophic position and seasonal changes in the diet of the red wood ant Formica aquilonia as indicated by stable isotope analysis. Ecol. Entomol. 42, 263–272 (2017).
Chan, E. K. W., Zhang, Y. & Dudgeon, D. Arthropod ‘rain’ into tropical streams: The importance of intact riparian forest and influences on fish diets. Mar. Freshw. Res. 59, 653–660 (2008).
Pringle, R. M. & Fox-Dobbs, K. Coupling of canopy and understory food webs by ground-dwelling predators. Ecol. Lett. 11, 1328–1337 (2008).
Google Scholar
Rozanova, O. L., Tsurikov, S. M., Tiunov, A. V. & Semenina, E. E. Arthropod rain in a temperate forest: Intensity and composition. Pedobiologia 75, 52–56 (2019).
Goncharov, A. A., Tsurikov, S. M., Potapov, A. M. & Tiunov, A. V. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: Field study in a spruce forest. Ecol. Res. 31, 923–933 (2016).
Google Scholar
Potapov, A. M., Goncharov, A. A., Tsurikov, S. M., Tully, T. & Tiunov, A. V. Assimilation of plant-derived freshly fixed carbon by soil collembolans: Not only via roots?. Pedobiologia 59, 189–193 (2016).
Hyodo, F., Kohzu, A. & Tayasu, I. Linking aboveground and belowground food webs through carbon and nitrogen stable isotope analyses. Ecol. Res. 25, 745–756 (2010).
Google Scholar
Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37–59 (2019).
Potapov, A. M., Semenina, E. E., Kurakov, A. V. & Tiunov, A. V. Large 13C/12C and small 15N/14N isotope fractionation in an experimental detrital foodweb (litter-fungi-collembolans). Ecol. Res. 28, 1069–1079 (2013).
Google Scholar
McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).
Google Scholar
Hyodo, F. Use of stable carbon and nitrogen isotopes in insect trophic ecology. Entomol. Sci. 18, 295–312 (2015).
Potapov, A. M., Korotkevich, A. Y. & Tiunov, A. V. Non-vascular plants as a food source for litter-dwelling Collembola: Field evidence. Pedobiologia 66, 11–17 (2018).
Tozer, W. C., Hackell, D., Miers, D. B. & Silvester, W. B. Extreme isotopic depletion of nitrogen in New Zealand lithophytes and epiphytes; the result of diffusive uptake of atmospheric ammonia?. Oecologia 144, 628–635 (2005).
Google Scholar
Delgado, V., Ederra, A. & Santamaría, J. M. Nitrogen and carbon contents and δ15N and δ13C signatures in six bryophyte species: Assessment of long-term deposition changes (1980–2010) in Spanish beech forests. Glob. Chang. Biol. 19, 2221–2228 (2013).
Google Scholar
Eskov, A. K. et al. Dependence of epiphytic community on autochthonous and allochthonous sources of nitrogen in three forest habitats of southern Vietnam. Plant Soil 443, 565–574 (2019).
Google Scholar
Potapov, A. A., Semenina, E. E., Korotkevich, A. Y., Kuznetsova, N. A. & Tiunov, A. V. Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biol. Biochem. 101, 20–31 (2016).
Google Scholar
Wallwork, J. A. Ecology of Soil Animals (McGraw-Hill, 1970).
Behan-Pelletier, V. & Winchester, N. Arboreal oribatid mite diversity: Colonizing the canopy. Appl. Soil Ecol. 9, 45–51 (1998).
Yoshida, T. & Hijii, N. Microarthropod colonization of litter in arboreal and soil environments of a Japanese cedar (Cryptomeria japonica) plantation. J. For. Res. 16, 46–54 (2011).
Korobushkin, D. I., Gongalsky, K. B. & Tiunov, A. V. Isotopic niche (δ13C and δ15N values) of soil macrofauna in temperate forests. Rapid Commun. Mass Spectrom. 28, 1303–1311 (2014).
Google Scholar
Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).
Google Scholar
Spence, K. O. & Rosenheim, J. A. Isotopic enrichment in herbivorous insects: A comparative field-based study of variation. Oecologia 146, 89–97 (2005).
Google Scholar
Southwood, T. R. E., Wint, G. R. W., Kennedy, C. E. J. & Greenwood, S. R. The composition of the arthropod fauna of the canopies of some species of oak (Quercus). Eur. J. Entomol. 102, 65–72 (2005).
Chahartaghi, M., Langel, R., Scheu, S. & Ruess, L. Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol. Biochem. 37, 1718–1725 (2005).
Google Scholar
Winchester, N. N., Behan-Pelletier, V. M. & Ring, R. A. Arboreal specificity, diversity and abundance of canopy-dwelling oribatid mites (Acari: Oribatida). Pedobiologia 43, 391–400 (1999).
Grove, S. J. Saproxylic insect ecology and the sustainable management of forests. Annu. Rev. Ecol. Syst. 33, 1–23 (2002).
Erdmann, G., Otte, V., Langel, R., Scheu, S. & Maraun, M. The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15N, 13C) indicates strong niche differentiation. Exp. Appl. Acarol. 41, 1–10 (2007).
Google Scholar
Klarner, B., Maraun, M. & Scheu, S. Trophic diversity and niche partitioning in a species rich predator guild—Natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biol. Biochem. 57, 327–333 (2013).
Google Scholar
Brooks, J. R., Flanagan, L. B., Buchmann, N. & Ehleringer, J. R. Carbon isotope composition of boreal plants: Functional grouping of life forms. Oecologia 110, 301–311 (1997).
Google Scholar
Pollierer, M. M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).
Google Scholar
Pollierer, M. M., Langel, R., Scheu, S. & Maraun, M. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol. Biochem. 41, 1221–1226 (2009).
Google Scholar
Tsurikov, S. M., Goncharov, A. A. & Tiunov, A. V. Intra-body variation and ontogenetic changes in the isotopic composition (13C/12C and 15N/14N) of beetles (Coleoptera). Entomol. Rev. 95, 326–333 (2015).
Ventura, M. & Jeppesen, E. Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction. Hydrobiologia 632, 297–308 (2009).
Google Scholar
Krab, E. J., Van Logtestijn, R. S. P., Cornelissen, J. H. C. & Berg, M. P. Reservations about preservations: Storage methods affect δ13C signatures differently even in closely related soil fauna. Methods Ecol. Evol. 3, 138–144 (2012).
Striganova, B. R. Nutrition of Soil Saprophages (Nauka, 1980) (In Russian).
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).
Source: Ecology - nature.com