in

The isotopic signature of the “arthropod rain” in a temperate forest

  • 1.

    Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3–13 (2001).

    Google Scholar 

  • 2.

    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 3.

    Van Der Putten, W. H. et al. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161, 1–14 (2009).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 4.

    Miyashita, T., Takada, M. & Shimazaki, A. Experimental evidence that aboveground predators are sustained by underground detritivores. Oikos 103, 31–36 (2003).

    Google Scholar 

  • 5.

    Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).

    ADS 

    Google Scholar 

  • 6.

    Haraguchi, T. F., Uchida, M., Shibata, Y. & Tayasu, I. Contributions of detrital subsidies to aboveground spiders during secondary succession, revealed by radiocarbon and stable isotope signatures. Oecologia 171, 935–944 (2013).

    PubMed 
    ADS 

    Google Scholar 

  • 7.

    Halaj, J. & Wise, D. H. Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web. Ecology 83, 3141 (2002).

    Google Scholar 

  • 8.

    Zakharov, A. A. Ants at the border between the epigean and soil blocks of a forest coenosis. Rej 21, 219–222 (2012).

    Google Scholar 

  • 9.

    Iakovlev, I. K., Novgorodova, T. A., Tiunov, A. V. & Reznikova, Z. I. Trophic position and seasonal changes in the diet of the red wood ant Formica aquilonia as indicated by stable isotope analysis. Ecol. Entomol. 42, 263–272 (2017).

    Google Scholar 

  • 10.

    Chan, E. K. W., Zhang, Y. & Dudgeon, D. Arthropod ‘rain’ into tropical streams: The importance of intact riparian forest and influences on fish diets. Mar. Freshw. Res. 59, 653–660 (2008).

    Google Scholar 

  • 11.

    Pringle, R. M. & Fox-Dobbs, K. Coupling of canopy and understory food webs by ground-dwelling predators. Ecol. Lett. 11, 1328–1337 (2008).

    PubMed 

    Google Scholar 

  • 12.

    Rozanova, O. L., Tsurikov, S. M., Tiunov, A. V. & Semenina, E. E. Arthropod rain in a temperate forest: Intensity and composition. Pedobiologia 75, 52–56 (2019).

    Google Scholar 

  • 13.

    Goncharov, A. A., Tsurikov, S. M., Potapov, A. M. & Tiunov, A. V. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: Field study in a spruce forest. Ecol. Res. 31, 923–933 (2016).

    CAS 

    Google Scholar 

  • 14.

    Potapov, A. M., Goncharov, A. A., Tsurikov, S. M., Tully, T. & Tiunov, A. V. Assimilation of plant-derived freshly fixed carbon by soil collembolans: Not only via roots?. Pedobiologia 59, 189–193 (2016).

    Google Scholar 

  • 15.

    Hyodo, F., Kohzu, A. & Tayasu, I. Linking aboveground and belowground food webs through carbon and nitrogen stable isotope analyses. Ecol. Res. 25, 745–756 (2010).

    CAS 

    Google Scholar 

  • 16.

    Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37–59 (2019).

    Google Scholar 

  • 17.

    Potapov, A. M., Semenina, E. E., Kurakov, A. V. & Tiunov, A. V. Large 13C/12C and small 15N/14N isotope fractionation in an experimental detrital foodweb (litter-fungi-collembolans). Ecol. Res. 28, 1069–1079 (2013).

    CAS 

    Google Scholar 

  • 18.

    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

    CAS 

    Google Scholar 

  • 19.

    Hyodo, F. Use of stable carbon and nitrogen isotopes in insect trophic ecology. Entomol. Sci. 18, 295–312 (2015).

    Google Scholar 

  • 20.

    Potapov, A. M., Korotkevich, A. Y. & Tiunov, A. V. Non-vascular plants as a food source for litter-dwelling Collembola: Field evidence. Pedobiologia 66, 11–17 (2018).

    Google Scholar 

  • 21.

    Tozer, W. C., Hackell, D., Miers, D. B. & Silvester, W. B. Extreme isotopic depletion of nitrogen in New Zealand lithophytes and epiphytes; the result of diffusive uptake of atmospheric ammonia?. Oecologia 144, 628–635 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 22.

    Delgado, V., Ederra, A. & Santamaría, J. M. Nitrogen and carbon contents and δ15N and δ13C signatures in six bryophyte species: Assessment of long-term deposition changes (1980–2010) in Spanish beech forests. Glob. Chang. Biol. 19, 2221–2228 (2013).

    PubMed 
    ADS 

    Google Scholar 

  • 23.

    Eskov, A. K. et al. Dependence of epiphytic community on autochthonous and allochthonous sources of nitrogen in three forest habitats of southern Vietnam. Plant Soil 443, 565–574 (2019).

    CAS 

    Google Scholar 

  • 24.

    Potapov, A. A., Semenina, E. E., Korotkevich, A. Y., Kuznetsova, N. A. & Tiunov, A. V. Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biol. Biochem. 101, 20–31 (2016).

    CAS 

    Google Scholar 

  • 25.

    Wallwork, J. A. Ecology of Soil Animals (McGraw-Hill, 1970).

    Google Scholar 

  • 26.

    Behan-Pelletier, V. & Winchester, N. Arboreal oribatid mite diversity: Colonizing the canopy. Appl. Soil Ecol. 9, 45–51 (1998).

    Google Scholar 

  • 27.

    Yoshida, T. & Hijii, N. Microarthropod colonization of litter in arboreal and soil environments of a Japanese cedar (Cryptomeria japonica) plantation. J. For. Res. 16, 46–54 (2011).

    Google Scholar 

  • 28.

    Korobushkin, D. I., Gongalsky, K. B. & Tiunov, A. V. Isotopic niche (δ13C and δ15N values) of soil macrofauna in temperate forests. Rapid Commun. Mass Spectrom. 28, 1303–1311 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 29.

    Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

    PubMed 
    ADS 

    Google Scholar 

  • 30.

    Spence, K. O. & Rosenheim, J. A. Isotopic enrichment in herbivorous insects: A comparative field-based study of variation. Oecologia 146, 89–97 (2005).

    PubMed 
    ADS 

    Google Scholar 

  • 31.

    Southwood, T. R. E., Wint, G. R. W., Kennedy, C. E. J. & Greenwood, S. R. The composition of the arthropod fauna of the canopies of some species of oak (Quercus). Eur. J. Entomol. 102, 65–72 (2005).

    Google Scholar 

  • 32.

    Chahartaghi, M., Langel, R., Scheu, S. & Ruess, L. Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol. Biochem. 37, 1718–1725 (2005).

    CAS 

    Google Scholar 

  • 33.

    Winchester, N. N., Behan-Pelletier, V. M. & Ring, R. A. Arboreal specificity, diversity and abundance of canopy-dwelling oribatid mites (Acari: Oribatida). Pedobiologia 43, 391–400 (1999).

    Google Scholar 

  • 34.

    Grove, S. J. Saproxylic insect ecology and the sustainable management of forests. Annu. Rev. Ecol. Syst. 33, 1–23 (2002).

    Google Scholar 

  • 35.

    Erdmann, G., Otte, V., Langel, R., Scheu, S. & Maraun, M. The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15N, 13C) indicates strong niche differentiation. Exp. Appl. Acarol. 41, 1–10 (2007).

    PubMed 

    Google Scholar 

  • 36.

    Klarner, B., Maraun, M. & Scheu, S. Trophic diversity and niche partitioning in a species rich predator guild—Natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biol. Biochem. 57, 327–333 (2013).

    CAS 

    Google Scholar 

  • 37.

    Brooks, J. R., Flanagan, L. B., Buchmann, N. & Ehleringer, J. R. Carbon isotope composition of boreal plants: Functional grouping of life forms. Oecologia 110, 301–311 (1997).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 38.

    Pollierer, M. M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).

    PubMed 

    Google Scholar 

  • 39.

    Pollierer, M. M., Langel, R., Scheu, S. & Maraun, M. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol. Biochem. 41, 1221–1226 (2009).

    CAS 

    Google Scholar 

  • 40.

    Tsurikov, S. M., Goncharov, A. A. & Tiunov, A. V. Intra-body variation and ontogenetic changes in the isotopic composition (13C/12C and 15N/14N) of beetles (Coleoptera). Entomol. Rev. 95, 326–333 (2015).

    Google Scholar 

  • 41.

    Ventura, M. & Jeppesen, E. Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction. Hydrobiologia 632, 297–308 (2009).

    CAS 

    Google Scholar 

  • 42.

    Krab, E. J., Van Logtestijn, R. S. P., Cornelissen, J. H. C. & Berg, M. P. Reservations about preservations: Storage methods affect δ13C signatures differently even in closely related soil fauna. Methods Ecol. Evol. 3, 138–144 (2012).

    Google Scholar 

  • 43.

    Striganova, B. R. Nutrition of Soil Saprophages (Nauka, 1980) (In Russian).

    Google Scholar 

  • 44.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    Google Scholar 

  • 45.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions