in

The role of methanotrophy in the microbial carbon metabolism of temperate lakes

  • 1.

    Bastviken, D. Methane. in Encyclopedia of Inland Waters (ed. Likens, G. E.) 783–805 (Elsevier, 2009). https://doi.org/10.1016/B978-012370626-3.00117-4

  • 2.

    Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Thottathil, S. D., Reis, P. C. J., del Giorgio, P. A. & Prairie, Y. T. The extent and regulation of summer methane oxidation in Northern Lakes. J. Geophys. Res. Biogeosciences 123, 3216–3230 (2018).

    CAS 
    ADS 

    Google Scholar 

  • 4.

    Kankaala, P., Taipale, S., Nykänen, H. & Jones, R. I. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J. Geophys. Res. Biogeosciences 112, 1–7 (2007).

    Google Scholar 

  • 5.

    Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T. & Ojala, A. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51, 1195–1204 (2006).

    CAS 
    ADS 

    Google Scholar 

  • 6.

    Bastviken, D., Ejlertsson, J., Sundh, I. & Tranvik, L. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84, 969–981 (2003).

    Google Scholar 

  • 7.

    Kankaala, P., Lopez Bellido, J., Ojala, A., Tulonen, T. & Jones, R. I. Variable production by different pelagic energy mobilizers in Boreal Lakes. Ecosystems 16, 1152–1164 (2013).

    CAS 

    Google Scholar 

  • 8.

    Morana, C. et al. Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences 12, 2077–2088 (2015).

    ADS 

    Google Scholar 

  • 9.

    Grey, J. The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Front. Ecol. Evol. 4, 1–14 (2016).

    Google Scholar 

  • 10.

    Jones, R. I. & Grey, J. Biogenic methane in freshwater food webs. Freshw. Biol. 56, 213–229 (2011).

    CAS 

    Google Scholar 

  • 11.

    Kankaala, P., Taipale, S. & Grey, J. Experimental d13C evidence for a contribution of methane to pelagic food webs in lakes. Limnol. Oceanogr. 51, 2821–2827 (2006).

    CAS 
    ADS 

    Google Scholar 

  • 12.

    Guérin, F. & Abril, G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J. Geophys. Res. 112, 1–14 (2007).

    Google Scholar 

  • 13.

    Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams. Sci. Total Environ. 579, 902–912 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 14.

    Soued, C. & Prairie, Y. T. The carbon footprint of a Malaysian tropical reservoir: measured versus modeled estimates highlight the underestimated key role of downstream processes. Biogeosciences 17, 515–227 (2020).

    CAS 
    ADS 

    Google Scholar 

  • 15.

    Del Giorgio, P. A. & Gasol, J. M. Physiological structure and single-cell activity in marine bacterioplankton. in Microbial Ecology of the Oceans: Second Edition (ed. Kirchman, D. L.) 243–298 (John Wiley & Sons, Inc, 2008). https://doi.org/10.1002/9780470281840.ch8

  • 16.

    Reis, P. C. J., Ruiz-González, C., Soued, C., Crevecoeur, S. & Prairie, Y. T. Rapid shifts in methanotrophic bacterial communities mitigate methane emissions from a tropical hydropower reservoir and its downstream river. Sci. Total Environ. 748, 141374 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 17.

    Thottathil, S. D., Reis, P. C. J. & Prairie, Y. T. Methane oxidation kinetics in northern freshwater lakes. Biogeochemistry 143, 105–116 (2019).

    CAS 

    Google Scholar 

  • 18.

    Milucka, J. et al. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J. 9, 1991–2002 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Zigah, P. K. et al. Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol. Oceanogr. 60, 553–572 (2015).

    ADS 

    Google Scholar 

  • 20.

    Mayr, M. J. et al. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun. Biol. 3, 1–9 (2020).

    Google Scholar 

  • 21.

    Bussmann, I., Rahalkar, M. & Schink, B. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol. Ecol. 56, 331–344 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Kankaala, P., Eller, G. & Jones, R. I. Could bacterivorous zooplankton affect lake pelagic methanotrophic activity? Fundam. Appl. Limnol. / Arch. f.ür. Hydrobiol. 169, 203–209 (2007).

    Google Scholar 

  • 23.

    Khmelenina, V. N. et al. Structural and functional features of methanotrophs from hypersaline and alkaline lakes. Microbiology 79, 472–482 (2010).

    CAS 

    Google Scholar 

  • 24.

    Westfall, C. S. & Levin, P. A. Bacterial cell size: multifactorial and multifaceted. Annu. Rev. Microbiol. 71, 499–517 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Chien, A. C., Hill, N. S. & Levin, P. A. Cell size control in bacteria. Curr. Biol. 22, R340–R349 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Velimirov, B. Nanobacteria, ultramicrobacteria and starvation forms: a search for the smallest metabolizing bacterium. Microbes Environ. 16, 67–77 (2001).

    Google Scholar 

  • 27.

    Reis, P. C. J., Thottathil, S. D., Ruiz-González, C. & Prairie, Y. T. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ. Microbiol. 22, 738–751 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Garcia-Chaves, M. C., Cottrell, M. T., Kirchman, D. L., Ruiz-González, C. & del Giorgio, P. A. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. Isme J. 10, 1579–1588 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Jürgens, K. & Matz, C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 81, 413–434 (2002).

    Google Scholar 

  • 30.

    Rautio, M. & Vincent, W. F. Benthic and pelagic food resources for–zooplankton in shallow high-latitude lakes and ponds. Freshw. Biol. 51, 1038–1052 (2006).

    CAS 

    Google Scholar 

  • 31.

    Rissanen, A. J. et al. Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat. Microb. Ecol. 81, 257–276 (2018).

    Google Scholar 

  • 32.

    Zimmermann, M. et al. Microbial methane oxidation efficiency and robustness during lake overturn. Limnol. Oceanogr. Lett. 6, 320–328 (2021).

    CAS 

    Google Scholar 

  • 33.

    Puri, A. W. et al. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl. Environ. Microbiol. 81, 1775–1781 (2015).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 34.

    Strong, P. J., Kalyuzhnaya, M., Silverman, J. & Clarke, W. P. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 215, 314–323 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol. Oceanogr. 61, S101–S118 (2016).

    Google Scholar 

  • 36.

    Smith, E. M. & Prairie, Y. T. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol. Oceanogr. 49, 137–147 (2004).

    CAS 
    ADS 

    Google Scholar 

  • 37.

    Del Giorgio, P. A., Cole, J. J., Caraco, N. F. & Peters, R. H. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80, 1422–1431 (1999).

    Google Scholar 

  • 38.

    Kellerman, A. M., Dittmar, T., Kothawala, D. N. & Tranvik, L. J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 5, 3804 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 39.

    Sun, L., Perdue, E. M., Meyer, J. L. & Weis, J. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol. Oceanogr. 42, 714–721 (1997).

    CAS 
    ADS 

    Google Scholar 

  • 40.

    Kellerman, A. M., Kothawala, D. N., Dittmar, T. & Tranvik, L. J. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 8, 454–457 (2015).

    CAS 
    ADS 

    Google Scholar 

  • 41.

    Guillemette, F. & del Giorgio, P. A. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol. Oceanogr. 56, 734–748 (2011).

    CAS 
    ADS 

    Google Scholar 

  • 42.

    Logue, J. B. et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 10, 533–545 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Salcher, M. M., Posch, T. & Pernthaler, J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 7, 896–907 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Sobek, S., Tranvik, L. J., Prairie, Y., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219 (2007).

    CAS 
    ADS 

    Google Scholar 

  • 45.

    Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 46.

    Oshkin, I. Y. et al. Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J. 9, 1119–1129 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol 26, 703–714 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Martinez-Cruz, K. et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci. Total Environ. 607–608, 23–31 (2017).

    PubMed 
    ADS 

    Google Scholar 

  • 49.

    Samad, M. S. & Bertilsson, S. Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Front. Microbiol. 8, 1–12 (2017).

    Google Scholar 

  • 50.

    Ricão Canelhas, M., Denfeld, B. A., Weyhenmeyer, G. A., Bastviken, D. & Bertilsson, S. Methane oxidation at the water-ice interface of an ice-covered lake. Limnol. Oceanogr. 61, S78–S90 (2016).

    ADS 

    Google Scholar 

  • 51.

    Houser, J. N. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can. J. Fish. Aquat. Sci. 63, 2447–2455 (2006).

    Google Scholar 

  • 52.

    Caplanne, S. & Laurion, I. Effect of chromophoric dissolved organic matter on epilimnetic stratification in lakes. Aquat. Sci. 70, 123–133 (2008).

    CAS 

    Google Scholar 

  • 53.

    Oswald, K. et al. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS ONE 10, e0132574 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Savvichev, A. S. et al. Light-dependent methane oxidation is the major process of the methane cycle in the water column of the Bol’shie Khruslomeny Polar Lake. Microbiology 88, 370–374 (2019).

    CAS 

    Google Scholar 

  • 55.

    Baines, S. B. & Pace, M. L. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090 (1991).

    ADS 

    Google Scholar 

  • 56.

    Cole, J. J., Likens, G. E. & Strayer, D. L. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27, 1080–1090 (1982).

    CAS 
    ADS 

    Google Scholar 

  • 57.

    Dumestre, J. et al. Influence of light intensity on methanotrophic bacterial activity in Petit Saut reservoir, French Guiana. Appl. Environ. Microbiol. 65, 534–539 (1999).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 58.

    Murase, J. & Sugimoto, A. Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol. Oceanogr. 50, 1339–1343 (2005).

    CAS 
    ADS 

    Google Scholar 

  • 59.

    Moran, M. A. & Hodson, R. E. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol. Oceanogr. 35, 1744–1756 (1990).

    CAS 
    ADS 

    Google Scholar 

  • 60.

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS 

    Google Scholar 

  • 61.

    Roulet, N. & Moore, T. R. Browning the waters. Nature 444, 283–284 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 62.

    Weyhenmeyer, G. A., Prairie, Y. T. & Tranvik, L. J. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PLoS ONE 9, e88104 (2014).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 63.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

    ADS 

    Google Scholar 

  • 64.

    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).

    CAS 

    Google Scholar 

  • 65.

    Cantin, A., Beisner, B. E., Gunn, J. M., Prairie, Y. T. & Winter, J. G. Effects of thermocline deepening on lake plankton communities. Can. J. Fish. Aquat. Sci. 68, 260–276 (2011).

    Google Scholar 

  • 66.

    Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).

    Google Scholar 

  • 67.

    Del Giorgio, P. A., Pace, M. L. & Fischer, D. Relationship of bacterial growth efficiency to spatial variation in bacterial activity in the Hudson River. Aquat. Microb. Ecol. 45, 55–67 (2006).

    Google Scholar 

  • 68.

    Eller, G., Stubner, S. & Frenzel, P. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol. Lett. 198, 91–97 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Zeder, M. ACME tool3. (2014).

  • 70.

    Callieri, C. et al. Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl. Environ. Microbiol. 75, 7298–7300 (2009).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 71.

    Lew, S. & Glińska-Lewczuk, K. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes. Sci. Total Environ. 645, 1201–1211 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 72.

    Fagerbakke, K. M., Heldal, M. & Norland, S. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10, 15–27 (1996).

    Google Scholar 

  • 73.

    Read J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling and Software. 26, 1325–1336 (2011).

    Google Scholar 

  • 74.

    R Core Team. R: a language and environment for statistical computing. (2019). https://www.R-project.org/.

  • 75.

    RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MAURL. (2018). http://www.rstudio.com/.

  • 76.

    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. (2019). https://cran.r-project.org/package=dplyr.

  • 77.

    Sievert, C. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC Florida. (2020).

  • 78.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016). https://ggplot2.tidyverse.org.

  • 79.

    Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 1.0.0. (2019). https://CRAN.R-project.org/package=cowplot.

  • 80.

    Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. R package version 2.3. (2017). https://CRAN.R-project.org/package=gridExtra.

  • 81.

    Reis, P. C. J., Thottathil, S. D. & Prairie, Y. T. Dataset: the role of methanotrophy in the microbial carbon metabolism of temperate lakes. (1.0.0) [Data set]. Zenodo. (2021). https://doi.org/10.5281/zenodo.5737277.


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions