Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 9514, 729 (2020).
Karl, D. et al. Dinitrogen fixation in the world’s oceans. Biogeochemistry 57–58, 47–98 (2002).
Dugdale, R. & Wilkerson, F. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 107–122 (Springer, 1992).
Carpenter, E. J. & Capone, D. G. in Nitrogen in the Marine Environment 2nd edn (eds Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J.) Ch. 4 (Elsevier, 2008).
Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 11, 23–266 (1997).
Buchanan, P. J., Chase, Z., Matear, R. J., Phipps, S. J. & Bindoff, N. L. Marine nitrogen fixers mediate a low latitude pathway for atmospheric CO2 drawdown. Nat. Commun. https://doi.org/10.1038/s41467-019-12549-z (2019).
Monteiro, F. M., Follows, M. J. & Dutkiewicz, S. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem. Cycles 24, 1–16 (2010).
Church, M. J., Björkman, K. M., Karl, D. M., Saito, M. A. & Zehr, J. P. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol. Oceanogr. 53, 63–77 (2008).
Google Scholar
Monteiro, F. M., Dutkiewicz, S. & Follows, M. J. Biogeographical controls on the marine nitrogen fixers. Global Biogeochem. Cycles 25, 1–8 (2011).
Dutkiewicz, S., Ward, B. A., Monteiro, F. & Follows, M. J. Interconnection of nitrogen fixers and iron in the Pacific Ocean: theory and numerical simulations. Global Biogeochem. Cycles 26, 1–16 (2012).
Walworth, N. G. et al. Nutrient-colimited Trichodesmium as a nitrogen source or sink in a future ocean. Appl. Environ. Microbiol. 84, 1–14 (2018).
Google Scholar
McGillicuddy, D. J. Jr. Do Trichodesmium spp. populations in the North Atlantic export most of the nitrogen they fix? Global Biogeochem. Cycles 28, 103–114 (2014).
Google Scholar
Carpenter, E. J. & Romans, K. Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254, 1989–1992 (1991).
Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).
Google Scholar
Capone, D. G. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).
Google Scholar
Gallon, J. R. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Biochem. Sci. 6, 19–23 (1981).
Google Scholar
Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA 108, 2184–2189 (2011).
Google Scholar
Dron, A. et al. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle. Environ. Microbiol. 14, 967–981 (2012).
Google Scholar
Mohr, W., Intermaggio, M. P. & LaRoche, J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 12, 412–421 (2010).
Google Scholar
Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2010).
Google Scholar
Burnat, M., Herrero, A. & Flores, E. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc. Natl Acad. Sci. USA 111, 3823–3828 (2014).
Google Scholar
Sherman, D. M., Tucker, D. & Sherman, L. A. Heterocyst development and localization of cyanophycin in N2-fixing cultures of Anabaena sp. PCC 7120 (Cyanobacteria). J. Phycol. 941, 932–941 (2000).
Lamont, H. C., Silvester, W. B. & Torrey, J. G. Nile red fluorescence demonstrates lipid in the envelope of vesicles from N2-fixing cultures of Frankia. Can. J. Microbiol. 34, 656–660 (1988).
Google Scholar
Saino, T. Diel variation in nitrogen fixation by a marine blue-green alga, Trichodesmium thiebautii. Deep Sea Res. 25, 1259–1263 (1978).
Saino, T. & Hattori, A. Aerobic nitrogen fixation by the marine non-heterocystous cyanobacterium Trichodesmium (Oscillatoria) spp.: its protective mechanism against oxygen. Mar. Biol. 70, 251–254 (1982).
Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294, 1534–1537 (2001).
Google Scholar
Ohki, K. & Taniuchi, Y. Detection of nitrogenase in individual cells of a natural population of Trichodesmium using immunocytochemical methods for fluorescent cells. J. Oceanogr. 65, 427–432 (2009).
Google Scholar
Eichner, M. et al. N2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments. New Phytol. 222, 852–863 (2019).
Google Scholar
Ohki, K. Intercellular localization of nitrogenase in a non-heterocystous cyanobacterium (cyanophyte), Trichodesmium sp. NIBB1067. J. Oceanogr. 64, 211–216 (2008).
Google Scholar
Ohki, K., Zehr, F. & Fujita, Y. Regulation of nitrogenase activity in relation to the light-dark regime in the filamentous non-heterocystous cyanobacterium Trichodesmium sp. NIBB 1067. J. Gen. Microbiol. 138, 2679–2685 (1992).
Google Scholar
Finzi-Hart, J. A. et al. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc. Natl Acad. Sci. USA 106, 9931 (2009).
Google Scholar
Sandh, G., El-Shehawy, R., Díez, B. & Bergman, B. Temporal separation of cell division and diazotrophy in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101. FEMS Microbiol. Lett. 295, 281–288 (2009).
Google Scholar
Küpper, H. et al. Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol. 135, 2120–2133 (2019).
Ohki, K. & Fujita, Y. Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. Mar. Biol. 98, 111–114 (1988).
Google Scholar
Waterbury, J. B. & Willey, J. M. Isolation and growth of marine planktonic Cyanobacteria. Methods Enzymol. 167, 100–105 (1988).
Google Scholar
Chen, Y. B., Zehr, J. P. & Mellon, M. Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: evidence for a circadian rhythm. J. Phycol. 32, 916–923 (1996).
Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowski, P. G. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).
Bell, P. R. F. et al. Laboratory culture studies of Trichodesmium isolated from the Great Barrier Reef lagoon, Australia. Hydrobiologia 532, 9–21 (2005).
Tzubari, Y., Magnezi, L., Be’Er, A. & Berman-Frank, I. Iron and phosphorus deprivation induce sociality in the marine bloom-forming cyanobacterium Trichodesmium. ISME J. 12, 1682–1693 (2018).
Google Scholar
Held, N. A., McIlvin, M. R., Moran, D. M., Laub, M. T. & Saito, M. A. Unique patterns and biogeochemical relevance of two-component sensing in marine bacteria. mSystems 4, 1–16 (2019).
Aryal, U. K. & Sherman, L. A. in Cyanobacteria Omics Manipulation (ed. Los, D. A.) Ch. 6 (Caister Academic Press, 2017).
Held, N. A. et al. Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences 17, 2537–2551 (2020).
Klugkist, J., Haaker, H., Wassink, H. & Veeger, C. The catalytic activity of nitrogenase in intact Azotobacter vinelandii cells. Eur. J. Biochem. 146, 509–515 (1985).
Google Scholar
Zehr, J. P., Wyman, M., Miller, V., Capone, D. G. & Duguay, L. Modification of the Fe protein of nitrogenase in natural populations of Trichodesmium thiebautii. Appl. Environ. Microbiol. 59, 669–676 (1993).
Google Scholar
Rodriguez, I. B. & Ho, T.-Y. Diel nitrogen fixation pattern of Trichodesmium: the interactive control of light and Ni. Sci. Rep. 4, 4445 (2014).
Google Scholar
Eichner, M., Kranz, S. A. & Rost, B. Combined effects of different CO2 levels and N sources on the diazotrophic cyanobacterium Trichodesmium. Physiol. Plant. 152, 316–330 (2014).
Google Scholar
Hutchins, D. A. et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat. Commun. 6, 1–7 (2015).
Levitan, O. et al. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic view. Plant Physiol. 154, 346–356 (2010).
Google Scholar
Villareal, T. A. & Carpenter, E. J. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol. 45, 1–10 (2003).
Google Scholar
Rabouille, S., Staal, M., Stal, L. J. & Soetaert, K. Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp. Appl. Environ. Microbiol. 72, 3217–3227 (2006).
Google Scholar
Breitbarth, E., Wohlers, J., Kläs, J., LaRoche, J. & Peeken, I. Nitrogen fixation and growth rates of Trichodesmium IMS-101 as a function of light intensity. Mar. Ecol. Prog. Ser. 359, 25–36 (2008).
Google Scholar
Chen, Y. B. et al. Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. strain IMS101. J. Bacteriol. 180, 3598–3605 (1998).
Google Scholar
Rabouille, S., Staal, M., Stal, L. J. & Soetaert, K. Modeling the dynamic regulation of nitrogen fixation in the Cyanobacterium Trichodesmium sp. Appl. Environ. Microbiol. 72, 3217–3227 (2006).
Google Scholar
Capone, D. G., O’Neill, J. M., Zehr, J. & Carpenter, E. J. Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautti. Appl. Environ. Microbiol. 56, 3532–3536 (1990).
Google Scholar
Gründel, M., Scheunemann, R., Lockau, W. & Zilliges, Y. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158, 3032–3043 (2012).
Google Scholar
Jackson, S. A., Eaton-Rye, J. J., Bryant, D. A., Posewitz, M. C. & Davies, F. K. Dynamics of photosynthesis in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. Appl. Environ. Microbiol. 81, 6210–6222 (2015).
Google Scholar
Boatman, T. G., Davey, P. A., Lawson, T. & Geider, R. J. The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101. PLoS ONE 13, 1–24 (2018).
Chappell, P. D., Moffett, J. W., Hynes, A. M. & Webb, E. A. Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium. ISME J. 6, 1728–1739 (2012).
Google Scholar
Chappell, P. D. & Webb, E. A. A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium. Environ. Microbiol. 12, 13–27 (2010).
Google Scholar
Walsby, A. E. The properties and buoyancy-providing role of gas vacuoles in Trichodesmium Ehrenberg. Br. Phycol. J. 13, 103–116 (1978).
Villareal, T. A. & Carpenter, E. J. Diel buoyancy regulation in the marine diazotrophic cyanobacterium Trichodesmium thiebautii. Limnol. Oceanogr. 35, 1832–1837 (1990).
Romans, K. M., Carpenter, E. J. & Bergman, B. Buoyancy regulation in the colonial diazotrophic cyanobacterium Trichodesmium tenue: ultrastructure and storage of carbohydrate, polyphosphate, and nitrogen. J. Phycol. 30, 935–942 (1994).
Wang, L. et al. Molecular structure of glycogen in Escherichia coli. Biomacromolecules 20, 2821–2829 (2019).
Google Scholar
Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. & Falkowski, P. G. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46, 1249–1260 (2001).
Google Scholar
Kustka, A. B. et al. Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron:carbon ratios of field populations. Limnol. Oceanogr. 49, 1224 (2004).
Google Scholar
Paerl, H. W., Prufert-Bebout, I. L. E., Guo, C. & Carolina, N. Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol. 60, 1044–1047 (1994).
Google Scholar
Rubin, M., Berman-Frank, I. & Shaked, Y. Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 4, 529–534 (2011).
Google Scholar
Polyviou, D. et al. Desert dust as a source of iron to the globally important diazotroph Trichodesmium. Front. Microbiol. 8, 1–12 (2018).
Basu, S. & Shaked, Y. Mineral iron utilization by natural and cultured Trichodesmium and associated bacteria. Limnol. Oceanogr. 63, 2307–2320 (2018).
Google Scholar
Held, N. A. et al. Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics. ISME Commun. 1, 35 (2021).
Basu, S., Gledhill, M., de Beer, D., Prabhu Matondkar, S. G. & Shaked, Y. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun. Biol. 2, 1–8 (2019).
Google Scholar
Tyrrell, T. et al. Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. J. Plankton Res. 25, 405–416 (2003).
Google Scholar
Robson, R. L. & Postgate, J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 34, 183–207 (1980).
Zehr, J. P. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 19, 162–173 (2011).
Google Scholar
Bergman, B. & Carpenter, E. J. Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. J. Phycol. 27, 158–165 (1991).
Google Scholar
Inomura, K., Wilson, S. T. & Deutsch, C. Mechanistic model for the coexistence of nitrogen fixation and photosynthesis in marine Trichodesmium. mSystems 4, 1–13 (2019).
Janson, S., Matveyev, A. & Bergman, B. The presence and expression of hetR in the non-heterocystous cyanobacterium Symploca PCC 8002. FEMS Microbiol. Lett. 168, 173–179 (1998).
Google Scholar
Zhang, J. Y., Chen, W. L. & Zhang, C. C. hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous nonheterocyst-forming cyanobacteria. Microbiology 155, 1418–1426 (2009).
Google Scholar
Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Res. 2 Top. Stud. Oceanogr. 49, 463–507 (2001).
Chisholm, S. W. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 213–237 (Springer, 1992).https://doi.org/10.1007/978-1-4899-0762-2_12
Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).
Google Scholar
Lu, X. & Zhu, H. Tube-gel digestion: a novel proteomic approach for high-throughput analysis of membrane proteins. Mol. Cell Proteom. 4, 1948–1958 (2005).
Google Scholar
Saito, M. A. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345, 1173–1177 (2014).
Google Scholar
McIlvin, M. R. & Saito, M. A. Online nanoflow two-dimension comprehensive active modulation reversed phase-reversed phase liquid chromatography high-resolution mass spectrometry for metaproteomics of environmental and microbiome samples. J. Proteome Res. 20, 4589–4597 (2021).
Google Scholar
Lee, M. D. et al. Transcriptional activities of the microbial consortium living with the marine nitrogen-fixing cyanobacterium Trichodesmium reveal potential roles in community-level nitrogen cycling. Appl. Environ. Microbiol. 84, AEM.02026-17 (2017).
Zhang, Y., Wen, Z., Washburn, M. P. & Florens, L. Refinements to label-free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 82, 2272–2281 (2010).
Google Scholar
Gallien, S., Bourmaud, A., Kim, S. Y. & Domon, B. Technical considerations for large-scale parallel reaction monitoring analysis. J. Proteom. 100, 147–159 (2014).
Google Scholar
Pino, L. K. et al. The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 176, 139–148 (2019).
Held, N. A. et al. Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics. ISME Commun. https://doi.org/10.1038/s43705-021-00034-y (2021).
White, A. E., Spitz, Y. H. & Letelier, R. M. Modeling carbohydrate ballasting by Trichodesmium spp. Mar. Ecol. Prog. Ser. 323, 35–45 (2006).
Morrison, F. A. An Introduction to Fluid Mechanics (Cambridge Univ. Press, 2013).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar
Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. In 7th Python Scientific Conference (SciPy 2008) 11–15 (2008).
Source: Ecology - nature.com