Science Plan and Implementation Strategy IGBP Report No. 53/IHDP Report No. 19 (Global Land Project, 2005).
Millennium Ecosystem Assessment—Ecosystems and Human Well-Being: Desertification Synthesis Encyclopedia of the Anthropocene vols 1–5 (MEA, 2017).
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2015).
Google Scholar
Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).
Google Scholar
Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).
Google Scholar
Belnap, J. Surface disturbances: their role in acceleration desertification. Environ. Monit. Assess. 37, 38–57 (1995).
Google Scholar
Zhao, Y., Jia, R. L. & Wang, J. Towards stopping land degradation in drylands: water-saving techniques for cultivating biocrusts in situ. Land Degrad. Dev. 30, 2336–2346 (2019).
Google Scholar
Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).
Google Scholar
Coe, K. K. & Sparks, J. P. Physiology-based prognostic modeling of the influence of changes in precipitation on a keystone dryland plant species. Oecologia 176, 933–942 (2014).
Google Scholar
Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).
Google Scholar
Belnap, J. & Gillette, D. A. Soil surface disturbance: impacts on potential wind erodibility of sand desert soils in SE Utah, USA. Land Degrad. Dev. 8, 355–362 (1997).
Google Scholar
Rutherford, W. A. et al. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Sci. Rep. 7, 44188 (2017).
Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).
Ferrenberg, S., Faist, A. M., Howell, A. & Reed, S. C. Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant Soil 429, 77–90 (2018).
Google Scholar
Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 26, 6003–6014 (2020).
Ferrenberg, S., Reed, S. C. & Belnap, J. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc. Natl Acad. Sci. USA 112, 12116–12121 (2015).
Google Scholar
Reed, S. C. et al. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Change 2, 752–755 (2012).
Google Scholar
Concostrina-Zubiri, L. et al. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics. Ecol. Appl. 24, 1863–1877 (2014).
Google Scholar
Weber, B., Bowker, M., Zhang, Y. & Belnap, J. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 479–498 (Springer, 2016).
Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).
Google Scholar
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Google Scholar
Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, e03360 (2011).
Google Scholar
Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).
Google Scholar
Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).
Fukami, T. & Nakajima, M. Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14, 973–984 (2011).
Google Scholar
Belnap, J. & Büdel, B. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 305–320 (Springer, 2016).
Belnap, J. & Warren, S. D. Measuring restoration success: a lesson from Patton’s tank tracks. Ecol. Bull. 79, 33 (1998).
Belnap, J. & Elderidge, D. in Biological Soil Crusts: Structure, Function and Management (eds Belnap, J. & Lange, O. L.) 363–383 (Springer, 2001).
Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
Google Scholar
Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
Google Scholar
Sala, O. E. & Lauenroth, W. K. Small rainfall events: an ecological role in semiarid regions. Oecologia 53, 301–304 (1982).
Cayan, D. R. et al. Future dryness in the Southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. USA 107, 21271–21276 (2010).
Google Scholar
Christensen, N. S., Wood, A. W., Nathalie, V., Lettenmaier, D. P. & Palmer, R. N. The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim. Change 62, 337 (2004).
Google Scholar
Herrick, J. et al. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 44, 27–35 (2001).
Google Scholar
Escolar, C., Martínez, I., Bowker, M. A. & Maestre, F. T. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Phil. Trans. R. Soc. B 367, 3087–3099 (2012).
Google Scholar
Scheffer, M. et al. Creating a safe operating space for iconic ecosystems: manage local stressors to promote resilience to global change. Science 347, 1317–1319 (2015).
Google Scholar
Collins, S. L., Micheli, F. & Hartt, L. A method to determine rates and patterns of variability in ecological communities. Oikos 91, 285–293 (2000).
Google Scholar
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
Google Scholar
IPCC. Climate Change 2014: Impacts, Adaptations, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).
Mirzabaev, A. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).
Torres-Cruz, T. J. et al. Species-specific nitrogenase activity in lichen-dominated biological soil crusts from the Colorado Plateau, USA. Plant Soil 429, 113–125 (2018).
Google Scholar
Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).
Google Scholar
Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6, 886–897 (2011).
Google Scholar
Tucker, C. L., Ferrenberg, S. & Reed, S. C. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state. Ecosystems 22, 15–32 (2018). https://doi.org/10.1007/s10021-018-0250-4
Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141, 317–324 (2004).
Google Scholar
Karl, T. R., Knight, R. W. & Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220 (1995).
Google Scholar
Kunkel, K. E., Easterling, D. R., Redmond, K. & Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 30, 1895–2000 (2003).
Google Scholar
Kim, J. A projection of the effects of the climate change induced by increased CO2 on extreme hydrologic events in the Western US. Clim. Change 68, 153–168 (2005).
Google Scholar
Smith, S. J. et al. Climate change impacts for the conterminous USA: an integrated assessment part 1. Scenarios and context. Clim. Change 69, 7–25 (2005). https://doi.org/10.1007/1-4020-3876-3_2
Schwinning, S., Belnap, J., Bowling, D. R. & Ehleringer, J. R. Sensitivity of the Colorado Plateau to change: climate, ecosystems, and society. Ecol. Soc. 13, 28 (2008).
Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
Google Scholar
Jonasson, S. The point intercept method for non-destructive estimation of biomass. Phytocoenologia 11, 385–388 (1983).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Oksanen, A. J. et al. Vegan: Community Ecology Package. Rpackage version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2008).
Google Scholar
Venables, W. & Ripley, B. Modern Applied Statistics with S. (Springer, 2002).
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’ https://github.com/rvlenth/emmeans (2018).
Signorell, A. DescTools: Tools for Descriptive Statistics (2021).
Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn 1–476 (CRC/Taylor & Francis, 2017).
Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 547–511 (1992).
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
Google Scholar
Modrák, M., Barrett, M., Weber, F. & Coronado, E. bayesplot: Plotting for Bayesian Models. R package version 1.8.0 https://mc-stan.org/bayesplot/ (2021).
Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).
Google Scholar
Phillips, M. L., Howell, A., Lauria, C. M., Belnap, J. & Reed, S. C. Data and software code from two long-term experiments (1996–2011 and 2005–2018) at three sites on the Colorado Plateau of North America (US Geological Survey, 2021); https://doi.org/10.5066/P9RUN1TP
Source: Ecology - nature.com