Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651. https://doi.org/10.1126/science.1155725 (2008).
Google Scholar
Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527. https://doi.org/10.1007/s00248-017-1041-8 (2018).
Google Scholar
Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
Google Scholar
Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).
Google Scholar
Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651. https://doi.org/10.1038/ismej.2017.133 (2017).
Google Scholar
Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27. https://doi.org/10.1007/s10592-019-01150-y (2019).
Google Scholar
Ellegaard, K. M. & Engel, P. Beyond 16S rRNA Community profiling: intra-species diversity in the gut microbiota. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.01475 (2016).
Sugden, S., Sanderson, D., Ford, K., Stein, L. Y. & St. Clair, C. C. An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci. Rep. 10, 22207, doi:https://doi.org/10.1038/s41598-020-78891-1 (2020).
Góngora, E., Elliott, K. H. & Whyte, L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci. Rep. 11, 1200. https://doi.org/10.1038/s41598-020-80557-x (2021).
Google Scholar
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970. https://doi.org/10.1126/science.1198719 (2011).
Google Scholar
Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nature Commun 7, 10516 (2016).
Google Scholar
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).
Google Scholar
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64, doi:https://doi.org/10.1038/s41559-017-0402-5 (2018).
Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582, doi:https://doi.org/10.1038/s41559-021-01403-5 (2021).
Wasimuddin, et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26, 5515–5527. https://doi.org/10.1111/mec.14278 (2017).
Google Scholar
Alfano, N. et al. Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci. Rep. 5, 10189. https://doi.org/10.1038/srep10189 (2015).
Google Scholar
Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B. & Gänzle, M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. Plos One 6, e27905 (2011).
Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14, 1655–1661 (2016).
Google Scholar
Durner, G., Laidre, K. & York, G. Polar Bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 7–11 June 2016, Anchorage, Alaska. Gland, Switzerland and Cambridge, UK: IUCN. xxx+ 207pp (2018).
Amstrup, S. C., Marcot, B. G. & Douglas, D. C. in Arctic sea ice decline: Observations, projections, mechanisms, and implications Geophysics monograph series (eds E.T. DeWeaver, C.M. Bitz, & L.-B. Tremblay) 213–268 (AGU, 2008).
Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr 78, 591–613 (2008).
McKinney, M. A. et al. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears. Environ. Sci. Technol. 45, 896–902 (2011).
Google Scholar
Laidre, K. L. et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 29, 724–737 (2015).
Google Scholar
Stern, H. L. & Laidre, K. L. Sea-ice indicators of polar bear habitat. Cryosphere 10, 2027–2041. https://doi.org/10.5194/tc-10-2027-2016 (2016).
Google Scholar
Atwood, T. C. et al. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS ONE 11, e0155932 (2016).
Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?. Front. Ecol. Environ. 13, 138–145 (2015).
Herreman, J. K. & Peacock, E. Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska. Ursus 24, 148–163 (2013).
Glad, T. et al. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol. 10, doi:https://doi.org/10.1186/1471-2180-10-10 (2010).
Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. https://doi.org/10.1038/s41396-019-0480-2 (2019).
Google Scholar
McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).
Google Scholar
Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front. Microbiol. 8, doi:https://doi.org/10.3389/fmicb.2017.01666 (2017).
Cho, G.-S. et al. Quantification of Slackia and Eggerthella spp. in Human Feces and Adhesion of Representatives Strains to Caco-2 Cells. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.00658 (2016).
Astbury, S. et al. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 11, 569–580. https://doi.org/10.1080/19490976.2019.1681861 (2020).
Google Scholar
Gomez-Arango, L. F. et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201 (2018).
Google Scholar
Jeong, Y. et al. Gut microbial composition and function are altered in patients with early rheumatoid arthritis. J. Clin. Med. 8, 693 (2019).
Google Scholar
Liu, X. et al. Blautia-a new functional genus with potential probiotic properties?. Gut microbes 13, 1–21. https://doi.org/10.1080/19490976.2021.1875796 (2021).
Google Scholar
Claus, S. P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271-e210 (2011).
Google Scholar
Martínez, I. et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 75, 4175–4184 (2009).
Google Scholar
Sergeant, M. J. et al. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9, e91941 (2014).
Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8, e71108 (2013).
Shetty, S. A., Marathe, N. P., Lanjekar, V., Ranade, D. & Shouche, Y. S. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS One 8, e79353 (2013).
Jiang, X.-L., Su, Y. & Zhu, W.-Y. Fermentation characteristics of Megasphaera elsdenii J6 derived from pig feces on different lactate isomers. J. Integr. Agric. 15, 1575–1583. https://doi.org/10.1016/S2095-3119(15)61236-9 (2016).
Google Scholar
Hobson, K. A. & Stirling, I. Low variation in blood delta C-13 among Hudson Bay polar bears: implications for metabolism and tracing terrestrial foraging. Mar. Mammal Sci 13, 359–367 (1997).
Hobson, K. A., Stirling, I. & Andriashek, D. S. Isotopic homogeneity of breath CO2 from fasting and berry-eating polar bears: implications for tracing reliance on terrestrial foods in a changing Arctic. Can. J. Zool 87, 50–55 (2009).
Google Scholar
Sakamoto, M. & Ohkuma, M. Reclassification of Xylanibacter oryzae Ueki et al. 2006 as Prevotella oryzae comb. nov., with an emended description of the genus Prevotella. Int. J. Syst. Evol. Microbiol. 62, 2637–2642 (2012).
Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).
Google Scholar
Rajilić-Stojanović, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).
Google Scholar
Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5, e9085 (2010).
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
Rajilić-Stojanović, M. & de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047. https://doi.org/10.1111/1574-6976.12075 (2014).
Google Scholar
do Nascimento Silva, A., de Avila, E. D., Nakano, V. & Avila-Campos, M. J. Pathogenicity and genetic profile of oral Porphyromonas species from canine periodontitis. Arch. Oral Biol. 83, 20–24 (2017).
Acuña-Amador, L. & Barloy-Hubler, F. Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: a systematic review and meta-analysis. Anaerobe 66, 102280, doi:https://doi.org/10.1016/j.anaerobe.2020.102280 (2020).
Solé, C. et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 160, 206–218. e213 (2021).
Osman, M. A. et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 11, 2925. https://doi.org/10.1038/s41598-021-82465-0 (2021).
Google Scholar
Murphy, E. C. & Frick, I.-M. Gram-positive anaerobic cocci – commensals and opportunistic pathogens. FEMS Microbiol. Rev. 37, 520–553. https://doi.org/10.1111/1574-6976.12005 (2013).
Google Scholar
Vitali, B., Abruzzo, A. & Mastromarino, P. in The Microbiota in Gastrointestinal Pathophysiology (eds Martin H. Floch, Yehuda Ringel, & W. Allan Walker) 399–407 (Academic Press, 2017).
Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).
Google Scholar
Kapourchali, F. R. & Cresci, G. A. M. Early-life gut microbiome—the importance of maternal and infant factors in its establishment. Nutr. Clin. Pract. 35, 386–405. https://doi.org/10.1002/ncp.10490 (2020).
Google Scholar
Guo, G. et al. The Gut Microbial Community Structure of the North American River Otter (Lontra canadensis) in the Alberta Oil Sands Region in Canada: relationship with local environmental variables and metal body burden. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.4876 (2020).
Google Scholar
Haworth, S. E., White, K. S., Côté, S. D. & Shafer, A. B. A. Space, time and captivity: quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS microbiology ecology 95, doi:https://doi.org/10.1093/femsec/fiz095 (2019).
McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633. https://doi.org/10.1002/ecs2.1633 (2017).
Google Scholar
Atwood, T. C. et al. Rapid environmental change drives increased land use by an arctic marine predator. PLoS ONE 11, e0155932–e0155932. https://doi.org/10.1371/journal.pone.0155932 (2016).
Google Scholar
Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524. https://doi.org/10.1002/fee.1963 (2018).
Google Scholar
Bromaghin, J. F. et al. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecol. Appl. 25, 634–651. https://doi.org/10.1890/14-1129.1 (2015).
Google Scholar
Atwood, T. C. et al. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Sci. Rep. 7, doi:https://doi.org/10.1038/s41598-017-13496-9 (2017).
Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).
Google Scholar
Sonsthagen, S. A. et al. DNA metabarcoding of feces to infer summer diet of Pacific walruses. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12717 (2020).
Google Scholar
Michaux, J., Dyck, M., Boag, P., Lougheed, S. & Van Coeverden de Groot, P. New insights on polar bear (Ursus maritimus) diet from faeces based on next-generation sequencing technologies. ARCTIC 74, 87–99, doi:https://doi.org/10.14430/arctic72239 (2021).
Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103. https://doi.org/10.1002/ece3.6043 (2020).
Google Scholar
Dominianni, C. et al. Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome. PLoS One 10, doi: https://doi.org/10.1371/journal.pone.0124599 (2015).
Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 78, 883–892. https://doi.org/10.1002/ajp.22555 (2016).
Google Scholar
Peng, C. et al. Sex-specific association between the gut microbiome and high-fat diet-induced metabolic disorders in mice. Biol. Sex Differ. 11, 5. https://doi.org/10.1186/s13293-020-0281-3 (2020).
Google Scholar
Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).
Google Scholar
Kaliannan, K. et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 6, 205. https://doi.org/10.1186/s40168-018-0587-0 (2018).
Google Scholar
Park, M. J. et al. Reproductive senescence and ischemic stroke remodel the gut microbiome and modulate the effects of estrogen treatment in female rats. Transl. Stroke Res., 1–19 (2019).
Thiemann, G. W., Budge, S. M., Iverson, S. J. & Stirling, I. Unusual fatty acid biomarkers reveal age- and sex-specific foraging in polar bears (Ursus maritimus). Can. J. Zool. 85, 505–517. https://doi.org/10.1139/Z07-028 (2007).
Google Scholar
Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706. https://doi.org/10.1111/j.1365-2486.2012.02753.x (2012).
Google Scholar
Miller, S., Wilder, J. & Wilson, R. R. Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. J. Mammal. 96, 1317–1325 (2015).
Mshelia, E. S. et al. The association between gut microbiome, sex, age and body condition scores of horses in Maiduguri and its environs. Microb. Pathog. 118, 81–86. https://doi.org/10.1016/j.micpath.2018.03.018 (2018).
Google Scholar
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560. https://doi.org/10.1126/science.aad3503 (2016).
Google Scholar
Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).
Google Scholar
Feng, P. et al. A review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients 11, 22 (2019).
Google Scholar
Vasemägi, A., Visse, M. & Kisand, V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. MSphere 2 (2017).
Kreisinger, J., Bastien, G. r., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. B: Biol. Sci. 370, doi:https://doi.org/10.1098/rstb.2014.0295 (2015).
Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
Google Scholar
Baldo, L. et al. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes. ISME J. 11, 1975–1987 (2017).
Google Scholar
Yan, D. et al. Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins (Manis javanica) Rescued from the Illegal Wildlife Trade. Curr. Microbiol. 78, 1017–1025. https://doi.org/10.1007/s00284-021-02357-4 (2021).
Google Scholar
Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125-1136.e1128. https://doi.org/10.1016/j.cell.2016.10.020 (2016).
Google Scholar
Mallott, E. K., Borries, C., Koenig, A., Amato, K. R. & Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 10, 9961. https://doi.org/10.1038/s41598-020-66865-2 (2020).
Google Scholar
Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the mammalian gut–brain axis. Adv. Appl. Microbiol. 91, 1–62 (2015).
Google Scholar
Bercik, P. et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139, 2102–2112 (2010).
Walter, J. M., Bagi, A. & Pampanin, D. M. Insights into the potential of the Atlantic cod gut microbiome as biomarker of oil contamination in the marine environment. Microorganisms 7, 209 (2019).
Google Scholar
Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comput. Biochem. Physiol. C: Toxicol. Pharmacol. 209, 1–8 (2018).
Google Scholar
Breton, J. et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 1–11 (2013).
Schliebe, S. et al. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea. Polar Biol. 31, 999–1010 (2008).
Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int J Genomics 2016, 5304028–5304028, doi:https://doi.org/10.1155/2016/5304028 (2016).
McKenney, E., Koelle, K., Dunn, R. & Yoder, A. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).
Google Scholar
Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr 74, 211–235 (2004).
Galicia, M. P., Thiemann, G. W., Dyck, M. G. & Ferguson, S. H. Characterization of polar bear (Ursus maritimus) diets in the Canadian High Arctic. Polar Biol. 38, 1983–1992 (2015).
Bourque, J. et al. Feeding habits of a new Arctic predator: Insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12 (2018).
Google Scholar
Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801 (2006).
Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc.: Ser. B (Methodol.) 44, 139–160 (1982).
Google Scholar
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
Google Scholar
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821. https://doi.org/10.1038/s41596-019-0264-1 (2020).
Google Scholar
McMurdie, P., Holmes, S., Kindt, R., Legendre, P. & O’Hara, R. P. an R package for reproducible interactive analysis and graphics of microbiome census data. Watson M, editor. PLoS One [Internet]. Public Library of Science (2013).
McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10, e1003531. https://doi.org/10.1371/journal.pcbi.1003531 (2014).
Google Scholar
Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 719 (2007).
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
Google Scholar
Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514. https://doi.org/10.1038/s41467-020-17041-7 (2020).
Google Scholar
Rode, K. D. et al. Identifying reliable indicators of fitness in polar bears. PLoS ONE 15, e0237444. https://doi.org/10.1371/journal.pone.0237444 (2020).
Google Scholar
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
Source: Ecology - nature.com